Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Birth and early evolution of a planetary nebula


The final expulsion of gas by a star as it forms a planetary nebula — the ionized shell of gas often observed surrounding a young white dwarf — is one of the most poorly understood stages of stellar evolution1,2. Such nebulae form extremely rapidly (about 100 years for the ionization) and so the formation process is inherently difficult to observe. Particularly puzzling is how a spherical star can produce a highly asymmetric nebula with collimated outflows. Here we report optical observations of the Stingray nebula3,4, which has become an ionized planetary nebula within the past few decades5. We find that the collimated outflows are already evident, and we have identified the nebular structure that focuses the outflows. We have also found a companion star, reinforcing previous suspicions that binary companions play an important role in shaping planetary nebulae and changing the direction of successive outflows6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hubble Space Telescope narrow-band images of He3-1357, the Stingray nebula.
Figure 2: An [O iii] 5,007-Å image with various morphological features indicated.

Similar content being viewed by others


  1. Kwok, S. in Late Stages of Stellar Evolution (eds Kwok, S. & Pottasch, S. R.) 321–335 (Kluwer Academic, Dordrecht, (1987)).

    Google Scholar 

  2. Maddox, J. Making sense of dwarf-star evolution. Nature 376, 15 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Henize, K. G. Observations of southern planetary nebulae. Astrophys. J. Suppl. Ser. 14, 125–153 (1967).

    Article  ADS  Google Scholar 

  4. Henize, K. G. Observations of southern emission-line stars. Astrophys. J. Suppl. Ser. 30, 391–550 (1976).

    Article  ADS  Google Scholar 

  5. Parthasarathy, M. et al. SAO 244567: a post-AGB star which has turned into a planetary nebula within the last 40 years. Astron. Astrophys. 267, L19–L22 (1993).

    ADS  CAS  Google Scholar 

  6. Youngelson, L. R., Tutukov, A. V. & Livio, M. The formation of binary and single nuclei of planetary nebulae. Astrophys. J. 418, 794–803 (1993).

    Article  ADS  Google Scholar 

  7. Bobrowsky, M. Narrowband HST imagery of the young planetary nebula Henize 1357. Astrophys. J. 426, L47–L50 (1994).

    Article  ADS  Google Scholar 

  8. Borkowski, K. J. et al. Collimation of astrophysical jets: the proto-planetary nebula He3-1475. Astrophys. J. 482, L97–L100 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Cantó, J. Astellar wind model for Herbig-Haro objects. Astron. Astrophys. 86, 327–338 (1980).

    ADS  Google Scholar 

  10. Morris, M. in From Miras to Planetary Nebulae (eds Mennessier, M. O. & Omont, A.) 520–535 (Frontières, Gif-sur-Yvette, (1990)).

    Google Scholar 

  11. Soker, N. & Livio, M. Disks and jets in planetary nebulae. Astrophys. J. 421, 219–224 (1994).

    Article  ADS  Google Scholar 

  12. Mellema, G. Astrophys. Space Sci. 245, 239–253 (1996).

    Google Scholar 

  13. Frank, A. et al. Amechanism for the production of jets and ansae in planetary nebulae. Astrophys. J. 471, L53–L56 (1996).

    Article  ADS  Google Scholar 

  14. Frank, A. & Mellema, G. in Herbig-Haro Flows and the Birth of Low Mass Stars (eds Reipurth, B. & Bertout, C.) 291–302 (Kluwer Academic, Dordrecht, (1997)).

    Book  Google Scholar 

  15. Kozok, J. R. Photometric observations of emission B-stars in the southern Milky Way. Astron. Astrophys. Suppl. Ser. 61, 387–405 (1985).

    ADS  Google Scholar 

  16. Kozok, J. R. Distances, reddening, and distribution of emission B-stars in the galactic centre region |l| ≤ 45 deg. Astron. Astrophys. Suppl. Ser. 62, 7–16 (1985).

    ADS  Google Scholar 

  17. Bobrowsky, M. et al. He3-1475 and its jets. Astrophys. J. 446, L89–L92 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Riera, A. et al. IRAS 17423-1755 [He3-1475]: a massive post-AGB star evolving into the planetary nebula stage? Astron. Astrophys. 302, 137–153 (1995).

    ADS  CAS  Google Scholar 

  19. Livio, M. & Pringle, J. E. The formation of point-symmetric nebulae. Astrophys. J. 465, L55–L56 (1996).

    Article  ADS  Google Scholar 

  20. Livio, M. & Pringle, J. E. Wobbling accretion disks, jets, and point-symmetric nebulae. Astrophys. J. 486, 835–839 (1997).

    Article  ADS  Google Scholar 

  21. Ratnatunga, K. U., Bahcall, J. N. & Casertano, S. Kinematic modeling of the galaxy I. The Yale bright star catalog. Astrophys. J. 339, 106–125 (1989).

    Article  ADS  Google Scholar 

  22. Casertano, S., Ratnatunga, K. U. & Bahcall, J. N. Kinematic modeling of the galaxy. II. Two samples of high proper motion stars. Astrophys. J. 357, 435–452 (1990).

    Article  ADS  Google Scholar 

  23. Icke, V., Balick, B. & Frank, A. The hydrodynamics of aspherical planetary nebulae II. Numerical modelling of the early evolution. Astron. Astrophys. 253, 224–243 (1992).

    ADS  MATH  Google Scholar 

  24. Livio, M. HST observations of nebular morphologies and their implications. Space Sci. Rev. (in the press).

  25. Kolesnik, I. G. & Pilyugin, L. S. The influence of a binary nucleus on the structure of planetary nebulae. Sov. Astron. 30, 169–173 (1986).

    ADS  Google Scholar 

  26. Sahu, K. C. & Desai, J. N. Kinematic structure of NGC 3132: the planetary nebula with a binary nucleus. Astron. Astrophys. 161, 357–362 (1986).

    ADS  CAS  Google Scholar 

  27. Pottasch, S. R. Planetary Nebulae 51–70 (Reidel, Dordrecht, (1983)).

    Book  Google Scholar 

  28. Parthasarathy, M. et al. Fading and variations in the spectrum of the central star of the very young planetary nebula SAO 244567 (Hen 1357). Astron. Astrophys. 300, L25–L28 (1995).

    ADS  CAS  Google Scholar 

  29. Feibelman, W. A. Recent changes in the IUE spectrum of the very young planetary nebula He3-1357 ( = SAO 244567). Astrophys. J. 443, 245–248 (1995).

    Article  ADS  CAS  Google Scholar 

  30. Blöcker, T. & Schönberner, D. Stellar evolution of low and intermediate-mass stars. III. An application of evolutionary post-AGB models: the variable central star FG Sagittae. Astron. Astrophys. 324, 991–997 (1997).

    ADS  Google Scholar 

  31. Blöcker, T. & Schönberner, D. On the fading of massive AGB remnants. Astron. Astrophys. 240, L11–L14 (1990).

    ADS  Google Scholar 

Download references


We thank T. Heckman for suggestions, M. Livio for discussions, and A. Frank for comments. This work is based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Matthew Bobrowsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bobrowsky, M., Sahu, K., Parthasarathy, M. et al. Birth and early evolution of a planetary nebula. Nature 392, 469–471 (1998).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing