Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Combination of baculovirus-expressed BMP-2 and rotating-shaft bioreactor culture synergistically enhances cartilage formation

Abstract

Baculovirus is an emerging gene delivery vector, thanks to a number of unique advantages. Herein, we genetically modified the rabbit articular chondrocytes with a recombinant baculovirus (Bac-CB) encoding bone morphogenetic protein-2 (BMP-2), which conferred high level BMP-2 expression and triggered the re-differentiation of dedifferentiated third passage (P3) chondrocytes in the monolayer culture. The transduced and mock-transduced P3 cells were seeded into porous scaffolds and cultured in either the dishes or the rotating-shaft bioreactor (RSB), a novel bioreactor imparting a dynamic, two-phase culture environment. Neither mock-transduced constructs in the RSB culture nor the Bac-CB-transduced constructs in the static culture grew into uniform cartilaginous tissues. Only the Bac-CB-transduced constructs cultured in the RSB for 3 weeks resulted in cartilaginous tissues with hyaline appearance, uniform cell distribution, cartilage-specific gene expression and considerably enhanced cartilage-specific extracellular matrix deposition, as determined by histological staining, reverse transcription-PCR analyses and biochemical assays. This is the first study demonstrating that combination of baculovirus-mediated growth factor expression and RSB culture synergistically enhanced in vitro creation of cartilaginous tissues from dedifferentiated chondrocytes. Since baculovirus transduction is generally considered safe, this approach represents a viable alternative to stimulate the formation of engineered cartilage in a more cost-effective way than the growth factor supplementation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Trippel SB, Ghivizzani SC, Nixon AJ . Gene-based approaches for the repair of articular cartilage. Gene Ther 2004; 11: 351–359.

    Article  CAS  PubMed  Google Scholar 

  2. Gelse K, Schneider H . Ex vivo gene therapy approaches to cartilage repair. Adv Drug Deliv Rev 2006; 58: 259–284.

    Article  CAS  PubMed  Google Scholar 

  3. Cucchiarini M, Madry H . Gene therapy for cartilage defects. J Gene Med 2005; 7: 1495–1509.

    Article  CAS  PubMed  Google Scholar 

  4. Lieberman JR, Ghivizzani SC, Evans CH . Gene transfer approaches to the healing of bone and cartilage. Mol Ther 2002; 6: 141–147.

    Article  CAS  PubMed  Google Scholar 

  5. Saraf A, Mikos AG . Gene delivery strategies for cartilage tissue engineering. Adv Drug Deliv Rev 2006; 58: 592–603.

    Article  CAS  PubMed  Google Scholar 

  6. Robbins PD, Ghivizzani SC . Viral vectors for gene therapy. Pharmacol Ther 1998; 80: 35–47.

    Article  CAS  PubMed  Google Scholar 

  7. Evans CH, Gouze E, Gouze JN, Robbins PD, Ghivizzani SC . Gene therapeutic approaches—transfer in vivo. Adv Drug Deliv Rev 2006; 58: 243–258.

    Article  CAS  PubMed  Google Scholar 

  8. Kost TA, Condreay JP, Jarvis DL . Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat Biotechnol 2005; 23: 567–575.

    Article  CAS  PubMed  Google Scholar 

  9. Hu Y-C . Baculovirus as a highly efficient expression vector in insect and mammalian cells. Acta Pharmacol Sin 2005; 26: 405–416.

    Article  CAS  PubMed  Google Scholar 

  10. Hu Y-C . Baculovirus vectors for gene therapy. Adv Virus Res 2006; 68: 287–320.

    Article  CAS  PubMed  Google Scholar 

  11. Yang D-G, Chung Y-C, Lai Y-K, Lai C-W, Liu H-J, Hu Y-C . Avian influenza virus hemagglutinin display on baculovirus envelope: cytoplasmic domain affects virus properties and vaccine potential. Mol Ther 2007; 15: 989–996.

    Article  CAS  PubMed  Google Scholar 

  12. Wang C-Y, Li F, Yang Y, Guo H-Y, Wu C-X, Wang S . Recombinant baculovirus containing the Diphtheria toxin A gene for malignant glioma therapy. Cancer Res 2006; 66: 5798–5806.

    Article  CAS  PubMed  Google Scholar 

  13. Ho Y-C, Chen H-C, Wang K-C, Hu Y-C . Highly efficient baculovirus-mediated gene transfer into rat chondrocytes. Biotechnol Bioeng 2004; 88: 643–651.

    Article  CAS  PubMed  Google Scholar 

  14. Martin I, Wendt D, Heberer M . The role of bioreactors in tissue engineering. Trends Biotechnol 2004; 22: 80–86.

    Article  CAS  PubMed  Google Scholar 

  15. Chen H-C, Hu Y-C . Bioreactors for tissue engineering. Biotechnol Lett 2006; 28: 1415–1423.

    Article  CAS  PubMed  Google Scholar 

  16. Portner R, Nagel-Heyer S, Goepfert C, Adamietz P, Meenen NM . Bioreactor design for tissue engineering. J Biosci Bioeng 2005; 100: 235–245.

    Article  PubMed  Google Scholar 

  17. Darling EM, Athanasiou KA . Articular cartilage bioreactors and bioprocesses. Tissue Eng 2003; 9: 9–26.

    Article  CAS  PubMed  Google Scholar 

  18. Chen H-C, Lee H-P, Sung M-L, Liao C-J, Hu Y-C . A novel rotating-shaft bioreactor for two-phase cultivation of tissue-engineered cartilage. Biotechnol Prog 2004; 20: 1802–1809.

    Article  CAS  PubMed  Google Scholar 

  19. Chen H-C, Lee H-P, Ho Y-C, Sung M-L, Hu Y-C . Combination of baculovirus-mediated gene transfer and rotating-shaft bioreactor for cartilage tissue engineering. Biomaterials 2006; 27: 3154–3162.

    Article  CAS  PubMed  Google Scholar 

  20. Wang K-C, Wu J-C, Chung Y-C, Ho Y-C, Chang MD, Hu Y-C . Baculovirus as a highly efficient gene delivery vector for the expression of hepatitis delta virus antigens in mammalian cells. Biotechnol Bioeng 2005; 89: 464–473.

    Article  CAS  Google Scholar 

  21. Merrihew RV, Clay WC, Condreay JP, Witherspoon SM, Dallas WS, Kost TA . Chromosomal integration of transduced recombinant baculovirus DNA in mammalian cells. J Virol 2001; 75: 903–909.

    Article  CAS  PubMed  Google Scholar 

  22. Cheshenko N, Krougliak N, Eisensmith RC, Krougliak VA . A novel system for the production of fully deleted adenovirus vectors that does not require helper adenovirus. Gene Ther 2001; 8: 846–854.

    Article  CAS  Google Scholar 

  23. Olmsted-Davis EA, Gugala Z, Gannon FH, Yotnda P, McAlhany RE, Lindsey RW et al. Use of a chimeric adenovirus vector enhances BMP2 production and bone formation. Hum Gene Ther 2002; 13: 1337–1347.

    Article  CAS  PubMed  Google Scholar 

  24. Gelse K, von der Mark K, Aigner T, Park J, Schneider H . Articular cartilage repair by gene therapy using growth factor-producing mesenchymal cells. Arthritis Rheum 2003; 48: 430–441.

    Article  CAS  PubMed  Google Scholar 

  25. Carlberg AL, Pucci B, Rallapalli R, Tuan RS, Hall DJ . Efficient chondrogenic differentiation of mesenchymal cells in micromass culture by retroviral gene transfer of BMP-2. Differentiation 2001; 67: 128–138.

    Article  CAS  PubMed  Google Scholar 

  26. Nesic D, Whiteside R, Brittberg M, Wendt D, Martin I, Mainil-Varlet P . Cartilage tissue engineering for degenerative joint disease. Adv Drug Deliv Rev 2006; 58: 300–322.

    Article  CAS  PubMed  Google Scholar 

  27. Gooch KJ, Tennant CJ . Mechanical Forces: Their Effects on Cells and Tissues. Springer: Berlin, 1997.

    Book  Google Scholar 

  28. Saini S, Wick TM . Concentric cylinder bioreactor for production of tissue engineered cartilage: effect of seeding density and hydrodynamic loading on construct development. Biotechnol Prog 2003; 19: 510–521.

    Article  CAS  PubMed  Google Scholar 

  29. Bueno EM, Bilgen B, Barabino GA . Wavy-walled bioreactor supports increased cell proliferation and matrix deposition in engineered cartilage constructs. Tissue Eng 2005; 11: 1699–1709.

    Article  CAS  PubMed  Google Scholar 

  30. Carver SE, Heath CA . Increasing extracellular matrix production in regenerating cartilage with intermittent physiological pressure. Biotechnol Bioeng 1999; 62: 166–174.

    Article  CAS  PubMed  Google Scholar 

  31. Freed LE, Langer R, Martin I, Pellis NR, VunjakNovakovic G . Tissue engineering of cartilage in space. Proc Natl Acad Sci USA 1997; 94: 13885–13890.

    Article  CAS  PubMed  Google Scholar 

  32. Cucchiarini M, Madry H, Ma C, Thurn T, Zurakowski D, Menger MD et al. Improved tissue repair in articular cartilage defects in vivo by rAAV-mediated overexpression of human fibroblast growth factor 2. Mol Ther 2005; 12: 229–238.

    Article  CAS  PubMed  Google Scholar 

  33. Madry H, Kaul G, Cucchiarini M, Stein U, Zurakowski D, Remberger K et al. Enhanced repair of articular cartilage defects in vivo by transplanted chondrocytes overexpressing insulin-like growth factor I (IGF-I). Gene Therapy 2005; 12: 1171–1179.

    Article  CAS  PubMed  Google Scholar 

  34. Obradovic B, Martin I, Padera RF, Treppo S, Freed LE, Vunjak-Novakovic G . Integration of engineered cartilage. J Orthop Res 2001; 19: 1089–1097.

    Article  CAS  PubMed  Google Scholar 

  35. Mierisch CM, Wilson HA, Turner MA, Milbrandt TA, Berthoux L, Hammarskjold ML et al. Chondrocyte transplantation into articular cartilage defects with use of calcium alginate: the fate of the cells. J Bone Joint Surg Am 2003; 85A: 1757–1767.

    Article  Google Scholar 

  36. Madry H, Padera R, Seidel J, Langer R, Freed LE, Trippel SB et al. Gene transfer of a human insulin-like growth factor I cDNA enhances tissue engineering of cartilage. Hum Gene Ther 2002; 13: 1621–1630.

    Article  CAS  PubMed  Google Scholar 

  37. Ho Y-C, Lee H-P, Hwang S-M, Lo W-H, Chen H-C, Chung C-K et al. Baculovirus transduction of human mesenchymal stem cell-derived progenitor cells: variation of transgene expression with cellular differentiation states. Gene Ther 2006; 13: 1471–1479.

    Article  CAS  PubMed  Google Scholar 

  38. Palmer GD, Steinert A, Pascher A, Gouze E, Gouze JN, Betz O et al. Gene-induced chondrogenesis of primary mesenchymal stem cells in vitro. Mol Ther 2005; 12: 219–228.

    Article  CAS  PubMed  Google Scholar 

  39. Park J, Gelse K, Frank S, von der Mark K, Aigner T, Schneider H . Transgene-activated mesenchymal cells for articular cartilage repair: a comparison of primary bone marrow-, perichondrium/periosteum- and fat-derived cells. J Gene Med 2006; 8: 112–125.

    Article  CAS  PubMed  Google Scholar 

  40. Grassi G, Kohn H, Dapas B, Farra R, Platz J, Engel S et al. Comparison between recombinant baculo- and adenoviral-vectors as transfer system in cardiovascular cells. Arch Virol 2006; 151: 255–271.

    Article  CAS  Google Scholar 

  41. Lee DK, Choi KB, Oh IS, Song SU, Hwang S, Lim CL et al. Continuous transforming growth factor b1 secretion by cell-mediated gene therapy maintains chondrocyte redifferentiation. Tissue Eng 2005; 11: 310–318.

    Article  CAS  Google Scholar 

  42. Nixon AJ, Haupt JL, Frisbie DD, Morisset SS, McIlwraith CW, Robbins PD et al. Gene-mediated restoration of cartilage matrix by combination insulin-like factor-I/interleukin-1 receptor antagonist therapy. Gene Ther 2005; 12: 177–186.

    Article  CAS  Google Scholar 

  43. Huard J, Li Y, Peng HR, Fu FH . Gene therapy and tissue engineering for sports medicine. J Gene Med 2003; 5: 93–108.

    Article  Google Scholar 

  44. Sung L-Y, Lo W-H, Chiu H-Y, Chen H-C, Chuang C-K, Lee H-P et al. Modulation of chondrocyte phenotype via baculovirus-mediated growth factor expression. Biomaterials 2007; 28: 3437–3447.

    Article  CAS  Google Scholar 

  45. Li X, Ionescu AM, Schwarz EM, Zhang X, Drissi H, Puzas JE et al. Smad6 is induced by BMP-2 and modulates chondrocyte differentiation. J Orthop Res 2003; 21: 908–913.

    Article  CAS  PubMed  Google Scholar 

  46. Tscheudschilsuren G, Bosserhoff AK, Schlegel J, Vollmer D, Anton A, Alt V et al. Regulation of mesenchymal stem cell and chondrocyte differentiation by MIA. Exp Cell Res 2006; 312: 63–72.

    CAS  PubMed  Google Scholar 

  47. Lee CT, Huang CP, Lee YD . Biomimetic porous scaffolds made from poly(L-lactide)-g-chondroitin sulfate blend with poly(L-lactide) for cartilage tissue engineering. Biomacromolecules 2006; 7: 2200–2209.

    Article  CAS  PubMed  Google Scholar 

  48. Farndale RW, Buttle DJ, Barrett AJ . Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta 1986; 883: 173–177.

    Article  CAS  PubMed  Google Scholar 

  49. Schwartz DE, Choi Y, Sandell LJ, Hanson WR . Quantitative analysis of collagen, protein and DNA in fixed, paraffin-embedded and sectioned tissue. Histochem J 1985; 17: 655–663.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the National Health Research Institutes (NHRI-EX96-9412EI), National Science Council (NSC 95-2221-E-007-215) and Ministry of Economy Affairs (MOEA 95A0283P2), Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y-C Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, HC., Sung, LY., Lo, WH. et al. Combination of baculovirus-expressed BMP-2 and rotating-shaft bioreactor culture synergistically enhances cartilage formation. Gene Ther 15, 309–317 (2008). https://doi.org/10.1038/sj.gt.3303087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3303087

Keywords

This article is cited by

Search

Quick links