Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Gene transfer of CD40-ligand to dendritic cells stimulates interferon-γ production to induce growth arrest and apoptosis of tumor cells

Abstract

In this study, we present evidence that gene transfer of the CD40-ligand (CD154) into human immature dendritic cells (DC) imparts direct antitumor effects on tumor cells. DC infected with adenovirus directed to express human CD154 on the cell surface (CD154-DC) elicited significantly higher levels of immune accessory molecules commonly found on mature DC. We found that co-cultivation with a human squamous cell carcinoma cell line (OSC-70) with CD154-DC significantly inhibited cell growth. We further demonstrate that OSC-70 cells stimulated with CD154-DC were more susceptible to apoptosis via TNF-related apoptosis inducing ligand (TRAIL). Importantly, tumor cells co-cultured with CD154-DC in transwell plates expressed upregulated cell surface TRAIL-R2. CD154-DC produced higher levels of interferon (IFN)-γ, IL-12p70 and soluble CD154, but the ability of CD154-DC to inhibit tumor cell growth was significantly abrogated by a neutralizing antibody to IFN-γ, indicating that this was mainly mediated by IFN-γ. Furthermore, intratumoral injection of CD154-DC significantly suppressed OSC-70 tumor growth in a xenograft model. Overall, these results reveal that CD154-DC have potential as an anti-cancer therapy by producing IFN-γ to arrest adjacent tumor cell growth and increase the susceptibility of apoptosis via TRAIL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Albert ML, Sauter B, Bhardwaj N . Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 1998; 392: 86–89.

    Article  CAS  PubMed  Google Scholar 

  2. Griffith TS, Wiley SR, Kubin MZ, Sedger LM, Maliszewski CR, Fanger NA . Monocyte-mediated tumoricidal activity via the tumor necrosis factor-related cytokine, TRAIL. J Exp Med 1998; 189: 1343–1354.

    Article  Google Scholar 

  3. Fanger NA, Maliszewski CR, Schooley K, Griffith TS . Human dendritic cells mediate cellular apoptosis via tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). J Exp Med 1999; 190: 1155–1164.

    Article  CAS  PubMed  Google Scholar 

  4. Vidalain PO, Azocar O, Yagita H, Rabourdin-combe C, Servet-Delpart C . Cytotoxic activity of human dendritic cells is differentially regulated by double-stranded RNA and CD40 ligand. J Immunol 2001; 167: 3765–3772.

    Article  CAS  PubMed  Google Scholar 

  5. Chapoval AI, Tamada K, Chen L . In vitro growth inhibition of a broad spectrum of tumor cell lines by activated human dendritic cells. Blood 2000; 95: 2346–2351.

    CAS  PubMed  Google Scholar 

  6. Caux C, Massacrier C, Vanbervliet B, Dubois B, Van Kooten C, Durand I et al. Activation of human dendritic cells through CD40 cross-linking. J Exp Med 1994; 180: 1263–1272.

    Article  CAS  PubMed  Google Scholar 

  7. Siegal FP, Kadowaki N, Shodell M, Fitzgerald-Bocarsly PA, Shah K, Ho S et al. The nature of the principal type 1 interferon-producing cells in human blood. Science 1999; 284: 1835–1837.

    Article  CAS  PubMed  Google Scholar 

  8. Palucka K, Banchereau J . Linking innate and adaptive immunity. Nat Med 1999; 5: 868–870.

    Article  CAS  PubMed  Google Scholar 

  9. Puddu P, Fantuzzi L, Borghi P, Varano B, Rainaldi G, Guillemard E et al. IL-12 induces IFN-gamma expression and secretion in mouse peritoneal macrophages. J Immunol 1997; 159: 3490–3497.

    CAS  PubMed  Google Scholar 

  10. Munder M, Mallo M, Eichmann K, Modolell M . Murine macrophages secrete interferon gamma upon combined stimulation with interleukin (IL)-12 and IL-18: a novel pathway of autocrine macrophage activation. J Exp Med 1998; 187: 2103–2108.

    Article  CAS  PubMed  Google Scholar 

  11. Ohteki T, Fukao T, Suzue K, Maki C, Ito M, Nakamura M et al. Interleukin 12-dependent interferon gamma production by CD8alpha+ lymphoid dendritic cells. J Exp Med 1999; 189: 1981–1986.

    Article  CAS  PubMed  Google Scholar 

  12. Fukao T, Matsuda S, Koyasu S . Synergistic effects of IL-4 and IL-18 on IL-12-dependent IFN-gamma production by dendritic cells. J Immunol 2000; 164: 64–71.

    Article  CAS  PubMed  Google Scholar 

  13. Pan G, O'rourke K, Chinnaiyan AM, Gentz R, Ebner R, Ni J et al. The receptor for the cytotoxic ligand TRAIL. Science 1997; 276: 111–113.

    Article  CAS  PubMed  Google Scholar 

  14. Walczak H, Degli-Esposti MA, Johnson RS, Smolak PJ, Waugh JY, Boiani N et al. TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL. EMBO J 1997; 16: 5386–5397.

    Article  CAS  PubMed  Google Scholar 

  15. Sheikh MS, Burns TF, Huang Y, Wu GS, Amundson S, Brooks KS et al. p53-dependent and -independent regulation of the death receptor KILLER/DR5 gene expression in response to genotoxic stress and tumor necrosis factor alpha. Cancer Res 1998; 58: 1593–1598.

    CAS  PubMed  Google Scholar 

  16. Chinnaiyan AM, Prasad U, Shakar S, Hamstra DA, Shanaiah M, Chenevert TL et al. Combined effect of tumor necrosis factor-related apoptosis-inducing ligand and ionizing radiation in breast cancer therapy. Proc Natl Acad Sci USA 2000; 97: 1754–1759.

    Article  CAS  PubMed  Google Scholar 

  17. Nagane M, Pan G, Weddle JJ, Dixit VM, Cavenee WK, Huang HJ et al. Increased death receptor 5 expression by chemotherapeutic agents in human gliomas causes synergistic cytotoxicity with tumor necrosis factor-related apoptosis-inducing ligand in vitro and in vivo. Cancer Res 2000; 60: 847–853.

    CAS  PubMed  Google Scholar 

  18. Ferrone S, Marincola FM . Loss of HLA class I antigens by melanoma cells: molecular mechanisms, functional significance and clinical relevance. Immunol Today 1995; 16: 487–494.

    Article  CAS  PubMed  Google Scholar 

  19. Rivoltini L, Barracchini KC, Viggiano V, Kawakami Y, Smith A, Mixon A et al. Quantitative correlation between HLA class I allele expression and recognition of melanoma cells by antigen-specific cytotoxic T lymphocytes. Cancer Res 1995; 55: 3149–3157.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Topalian SL, Rivoltini L, Mancini M, Markus NR, Robbins PF, Kawakami Y et al. Human CD4+ T cells specifically recognize a shared melanoma-associated antigen encoded by the tyrosinase gene. Proc Natl Acad Sci USA 1994; 91: 9461–9465.

    Article  CAS  Google Scholar 

  21. Marlin SD, Springer TA . Purified intercellular adhesion molecule-1 (ICAM-1) is a ligand for lymphocyte function-associated antigen 1 (LFA-1). Cell 1997; 51: 813–819.

    Article  Google Scholar 

  22. Becker JC, Dummer R, Hartmann AA, Burg G, Schmidt RE . Shedding of ICAM-1 from human melanoma cell lines induced by IFN-gamma and tumor necrosis factor-alpha. Functional consequences on cell-mediated cytotoxicity. J Immunol 1991; 147: 4398–4401.

    CAS  Google Scholar 

  23. Garrido F, Ruiz-Cabello F, Cabrera T, Perez-Villar JJ, Lopez-Botet M, Duggan-Keen M et al. Implications for immunosurveillance of altered HLA class I phenotypes in human tumours. Immunol Today 1997; 18: 89–95.

    Article  CAS  Google Scholar 

  24. Romero JM, Jimenez P, Cabrera T, Cozar JM, Pedrinaci S, Tallada M et al. Coordinated downregulation of the antigen presentation machinery and HLA class I/beta2-microglobulin complex is responsible for HLA-ABC loss in bladder cancer. Int J Cancer 2005; 113: 605–610.

    Article  CAS  Google Scholar 

  25. Sedger LM, Shows DM, Blanton RA, Peschon JJ, Goodwin RG, Cosman D et al. IFN-gamma mediates a novel antiviral activity through dynamic modulation of TRAIL and TRAIL receptor expression. J Immunol 1999; 163: 920–926.

    CAS  PubMed  Google Scholar 

  26. Merchant MS, Yang X, Melchionda F, Romero M, Klein R, Thiele CJ et al. Interferon gamma enhances the effectiveness of tumor necrosis factor-related apoptosis-inducing ligand receptor agonists in a xenograft model of Ewing's sarcoma. Cancer Res 2004; 64: 8349–8356.

    Article  CAS  PubMed  Google Scholar 

  27. Eliopoulos AG, Dawson CW, Mosialos G, Floettmann JE, Rowe M, Armitage RJ et al. CD40-induced growth inhibition in epithelial cells is mimicked by Epstein-Barr Virus-encoded LMP1: involvement of TRAF3 as a common mediator. Oncogene 1996; 13: 2243–2254.

    CAS  PubMed  Google Scholar 

  28. Eliopoulos AG, Davies C, Knox PG, Gallagher NJ, Afford SC, Adams DH et al. CD40 induces apoptosis in carcinoma cells through activation of cytotoxic ligands of the tumor necrosis factor superfamily. Mol Cell Biol 2000; 20: 5503–5515.

    Article  CAS  PubMed  Google Scholar 

  29. Aaronson DS, Horvath CM . A road map for those who don't know JAK-STAT. Science 2002; 296: 1653–1655.

    Article  CAS  PubMed  Google Scholar 

  30. Choi EA, Lei H, Maron DJ, Wilson JM, Barsoum J, Fraker DL et al. Stat1-dependent induction of tumor necrosis factor-related apoptosis-inducing ligand and the cell-surface death signaling pathway by interferon beta in human cancer cells. Cancer Res 2003; 63: 5299–5307.

    CAS  PubMed  Google Scholar 

  31. Griffith TS, Chin WA, Jackson GC, Lynch DH, Kubin MZ . Intracellular regulation of TRAIL-induced apoptosis in human melanoma cells. J Immunol 1998; 161: 2833–2840.

    CAS  PubMed  Google Scholar 

  32. Miyasaki T, Reed JC . A GTP-binding adapter protein couples TRAIL receptors to apoptosis-inducing proteins. Nat Immunol 2001; 2: 493–500.

    Article  Google Scholar 

  33. Nesterov A, Lu X, Johnson M, Miller GJ, Ivashchenko Y, Kraft AS . Elevated AKT activity protects the prostate cancer cell line LNCaP from TRAIL-induced apoptosis. J Biol Chem 2001; 276: 10767–10774.

    Article  CAS  PubMed  Google Scholar 

  34. Chen X, Thakkar H, Tyan F, Gim S, Robinson H, Lee C et al. Constitutively active Akt is an important regulator of TRAIL sensitivity in prostate cancer. Oncogene 2001; 20: 6073–6083.

    Article  CAS  PubMed  Google Scholar 

  35. Thakkar H, Chen X, Tyan F, Gim S, Robinson H, Lee C et al. Pro-survival function of Akt/protein kinase B in prostate cancer cells. Relationship with TRAIL resistance. J Biol Chem 2001; 276: 38361–38369.

    Article  CAS  PubMed  Google Scholar 

  36. Martelli AM, Tazzari PL, Tabellini G, Bortul R, Billi AM, Manzoli L et al. A new selective AKT pharmacological inhibitor reduces resistance to chemotherapeutic drugs, TRAIL, all-trans-retinoic acid, and ionizing radiation of human leukemia cells. Leukemia 2003; 17: 1794–1805.

    Article  CAS  PubMed  Google Scholar 

  37. Kikuchi T, Moore MA, Crystal RG . Dendritic cells modified to express CD40 ligand elicit therapeutic immunity against preexisting murine tumors. Blood 2000; 96: 91–99.

    CAS  PubMed  Google Scholar 

  38. Kikuchi T, Miyazawa N, Moore MA, Crystal RG . Tumor regression induced by intratumor administration of adenovirus vector expressing CD40 ligand and naive dendritic cells. Cancer Res 2000; 60: 6391–6395.

    CAS  PubMed  Google Scholar 

  39. Hemmings BA . Akt signaling: linking membrane events to life and death decisions. Science 1997; 275: 628–630.

    Article  CAS  PubMed  Google Scholar 

  40. Kennedy SG, Kandel ES, Cross TK, Hay N . Akt/Protein kinase B inhibits cell death by preventing the release of cytochrome c from mitochondria. Mol Cell Biol 1998; 19: 5800–5810.

    Article  Google Scholar 

  41. Smyth MJ, Cretney E, Takeda K, Wiltrout RH, Sedger LM, Kayagaki N et al. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) contributes to interferon gamma-dependent natural killer cell protection from tumor metastasis. J Exp Med 2001; 193: 661–670.

    Article  CAS  PubMed  Google Scholar 

  42. Miyazaki A, Sato N, Takahashi S, Sasaki A, Kohama G, Yamaguchi A et al. Cytotoxicity of histocompatibility leukocyte antigen-DR8-restricted CD4 killer T cells against human autologous squamous cell carcinoma. Jpn J Cancer Res 1997; 88: 191–197.

    Article  CAS  PubMed  Google Scholar 

  43. Nakamura T, Sato K, Hamada H . Effective gene transfer to human melanomas via integrin-targeted adenoviral vectors. Hum Gene Ther 2002; 13: 613–626.

    Article  CAS  Google Scholar 

  44. Yoshida Y, Sadata A, Zhang W, Saito K, Shinoura N, Hamada H . Generation of fiber-mutant recombinant adenoviruses for gene therapy of malignant glioma. Hum Gene Ther 1998; 9: 2503–2515.

    Article  CAS  Google Scholar 

  45. Kanegae Y, Lee G, Sato Y, Tanaka M, Nakai M, Sakaki T et al. Efficient gene activation in mammalian cells by using recombinant adenovirus expressing site-specific Cre recombinase. Nucleic Acids Res 1995; 23: 3816–3821.

    Article  CAS  PubMed  Google Scholar 

  46. Nyberg-Hoffman C, Shabram P, Li W, Giroux D, Aguilar-Cordova E . Sensitivity and reproducibility in adenoviral infectious titer determination. Nat Med 1997; 3: 808–811.

    Article  CAS  Google Scholar 

  47. Uchida H, Tanaka T, Sasaki K, Kato K, Dehari H, Ito Y et al. Adenovirus-mediated transfer of siRNA against survivin induced apoptosis and attenuated tumor cell growth in vitro and in vivo. Mol Ther 2004; 10: 162–171.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Hokkaido Red Cross Blood Center for providing us with human peripheral blood, and Tomoko Sonoda for her analysis assistance.This work was supported by Grant-in-Aid for Scientific Research on Priority Areas ‘Cancer’ from the Ministry of Education, Culture, Sports, Science and Technology (K Kato, K Nakamura and H Hamada) and by Grant-in-Aid for Cancer Research from the Ministry of Health and Welfare of Japan (H Hamada) and by Grant-in-Aid from Japan Leukemia Research Fund (K Kato).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Kato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomihara, K., Kato, K., Masuta, Y. et al. Gene transfer of CD40-ligand to dendritic cells stimulates interferon-γ production to induce growth arrest and apoptosis of tumor cells. Gene Ther 15, 203–213 (2008). https://doi.org/10.1038/sj.gt.3303056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3303056

Keywords

This article is cited by

Search

Quick links