Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Utility of Epstein–Barr virus-encoded small RNA promoters for driving the expression of fusion transcripts harboring short hairpin RNAs

Abstract

To induce RNA interference (RNAi), either small interfering RNAs (siRNAs) are directly introduced into the cell or short hairpin RNAs (shRNAs) are expressed from a DNA vector. At present, shRNAs are commonly synthesized by RNA polymerase III (Pol III) promoters of the H1 and U6 RNAs. In this study, we designed and characterized a new set of plasmid vectors driven by promoters of the Epstein–Barr virus (EBV)-encoded small RNAs (EBERs). The EBERs are the most abundant transcript in infected cells and they are transcribed by Pol III. We showed that the EBER promoters were able to drive the expression of shRNA fusion transcripts. siRNAs processed from these fusion transcripts specifically and effectively inhibited the expression of homologous reporter or endogenous genes in various types of cells. The partial EBER sequences in the fusion transcripts did not activate double-stranded RNA-dependent protein kinase or suppress RNAi. In nasopharyngeal carcinoma cells, the EBER2 promoter was stronger than the H1 and U6 promoters in shRNA synthesis, leading to more effective knockdown of the target genes. Taken together, our findings suggest that the EBER promoters fundamentally different from those of H1 and U6 can be used to drive the intracellular expression of shRNAs for effective silencing of target genes in mammalian cells and particularly, in EBV-infected cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC . Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391: 806–811.

    Article  CAS  PubMed  Google Scholar 

  2. Montgomery MK, Xu S, Fire A . RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc Natl Acad Sci USA 1998; 95: 15502–15507.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Zamore PD, Tuschl T, Sharp PA, Bartel DP . RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21–23 nucleotide intervals. Cell 2000; 101: 25–33.

    Article  CAS  PubMed  Google Scholar 

  4. Ghosh SK, Kusari J, Bandyopadhyay SK, Samanta H, Kumar R, Sen GC . Cloning, sequencing, expression of two murine 2′–5′-oligoadenylate synthetases. Structure-function relationships. J Biol Chem 1991; 266: 15293–15299.

    CAS  PubMed  Google Scholar 

  5. Samuel CE . The eIF-2α protein kinases, regulators of translation in eukaryotes from yeasts to humans. J Biol Chem 1993; 268: 7603–7606.

    CAS  PubMed  Google Scholar 

  6. Der SD, Yang YL, Weissmann C, Williams BR . A double-stranded RNA-activated protein kinase-dependent pathway mediating stress-induced apoptosis. Proc Natl Acad Sci USA 1997; 94: 3279–3283.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T . Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001; 411: 494–498.

    Article  CAS  PubMed  Google Scholar 

  8. Donze O, Picard D . RNA interference in mammalian cells using siRNAs synthesized with T7 RNA polymerase. Nucleic Acids Res 2002; 30: e46.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS . Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 2002; 16: 948–958.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Miyagishi M, Taira K . U6 promoter-driven siRNAs with four uridine 3′ overhangs efficiently suppress targeted gene expression in mammalian cells. Nat Biotechnol 2002; 20: 497–500.

    Article  CAS  PubMed  Google Scholar 

  11. Brummelkamp TR, Bernards R, Agami R . A system for stable expression of short interfering RNAs in mammalian cells. Science 2002; 296: 550–553.

    Article  CAS  PubMed  Google Scholar 

  12. Lee NS, Dohjima T, Bauer G, Li H, Li MJ, Ehsani A et al. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol 2002; 20: 500–505.

    Article  CAS  PubMed  Google Scholar 

  13. McManus MT, Petersen CP, Haines BB, Chen J, Sharp PA . Gene silencing using micro-RNA designed hairpins. RNA 2002; 8: 842–850.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Paul CP, Good PD, Winer I, Engelke DR . Effective expression of small interfering RNA in human cells. Nat Biotechnol 2002; 20: 505–508.

    Article  CAS  PubMed  Google Scholar 

  15. Sui G, Soohoo C, Affar EB, Gay F, Shi Y, Forrester WC et al. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci USA 2002; 99: 5515–5520.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Yu JY, DeRuiter SL, Turner DL . RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci USA 2002; 99: 6047–6052.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Kim DH, Behlke MA, Rose SD, Chang MS, Choi S, Rossi JJ . Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol 2005; 23: 222–226.

    Article  CAS  PubMed  Google Scholar 

  18. Xia H, Mao Q, Paulson HL, Davidson BL . siRNA-mediated gene silencing in vitro and in vivo. Nat Biotechnol 2002; 20: 1006–1010.

    Article  CAS  PubMed  Google Scholar 

  19. Denti MA, Rosa A, Sthandier O, De Angelis FG, Bozzoni I . A new vector, based on the PolII promoter of the U1 snRNA gene, for the expression of siRNAs in mammalian cells. Mol Ther 2004; 10: 191–199.

    Article  CAS  PubMed  Google Scholar 

  20. Schramm L, Hernandez N . Recruitment of RNA polymerase III to its target promoters. Genes Dev 2002; 16: 2593–2620.

    Article  CAS  PubMed  Google Scholar 

  21. Boden D, Pusch O, Lee F, Tucker L, Shank PR, Ramratnam B . Promoter choice affects the potency of HIV-1 specific RNA interference. Nucleic Acids Res 2003; 31: 5033–5038.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Kawasaki H, Taira K . Short hairpin type of dsRNAs that are controlled by tRNA(Val) promoter significantly induce RNAi-mediated gene silencing in the cytoplasm of human cells. Nucleic Acids Res 2003; 31: 700–707.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Pfeffer S, Zavolan M, Grasser FA, Chien M, Russo JJ, Ju J et al. Identification of virus-encoded microRNAs. Science 2004; 304: 734–736.

    Article  CAS  PubMed  Google Scholar 

  24. Cai X, Schäfer A, Lu S, Bilello JP, Desrosiers RC, Edwards R et al. Epstein-Barr virus microRNAs are evolutionarily conserved and differentially expressed. PLoS Pathog 2006; 2: e23.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Yuan J, Cahir-McFarland E, Zhao B, Kieff E . Virus and cell RNAs expressed during Epstein-Barr virus replication. J Virol 2006; 80: 2548–2565.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Thimmappaya B, Weinberger C, Schneider RJ, Shenk T . Adenovirus VAI RNA is required for efficient translation of viral mRNAs at late times after infection. Cell 1982; 31: 543–551.

    Article  CAS  PubMed  Google Scholar 

  27. Howe JG, Shu MD . Epstein-Barr virus small RNA (EBER) genes: unique transcription units that combine RNA polymerase II and III promoter elements. Cell 1989; 57: 825–834.

    Article  CAS  PubMed  Google Scholar 

  28. Howe JG, Shu MD . Upstream basal promoter element important for exclusive RNA polymerase III transcription of the EBER 2 gene. Mol Cell Biol 1993; 13: 2655–2665.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Wensing B, Stuhler A, Jenkins P, Hollyoake M, Karstegl CE, Farrell PJ . Variant chromatin structure of the oriP region of Epstein-Barr virus and regulation of EBER1 expression by upstream sequences and oriP. J Virol 2001; 75: 6235–6241.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Felton-Edkins ZA, Kondrashov A, Karali D, Fairley JA, Dawson CW, Arrand JR et al. Epstein-Barr virus induces cellular transcription factors to allow active expression of EBER genes by RNA polymerase III. J Biol Chem 2006; 281: 33871–33880.

    Article  CAS  PubMed  Google Scholar 

  31. Kok KH, Jin DY . Influenza A virus NS1 protein does not suppress RNA interference in mammalian cells. J Gen Virol 2006; 87: 2639–2644.

    Article  CAS  PubMed  Google Scholar 

  32. Kok KH, Ng MHJ, Ching YP, Jin DY . Human TRBP and PACT directly interact with each other and associate with Dicer to facilitate the production of small interfering RNA. J Biol Chem 2007; 282: 17649–17657.

    Article  CAS  PubMed  Google Scholar 

  33. Toczyski DP, Matera AG, Ward DC, Steitz JA . The Epstein-Barr virus (EBV) small RNA EBER 1 binds and relocalizes ribosomal protein L22 in EBV-infected human B lymphocytes. Proc Natl Acad Sci USA 1994; 91: 3463–3467.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Elia A, Laing KG, Schofield A, Tilleray VJ, Clemens MJ . Regulation of the double-stranded RNA-dependent protein kinase PKR by RNAs encoded by a repeated sequence in the Epstein-Barr virus genome. Nucleic Acids Res 1996; 24: 4471–4478.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Fok V, Friend K, Steitz JA . Epstein-Barr virus noncoding RNAs are confined to the nucleus, whereas their partner, the human La protein, undergoes nucleocytoplasmic shuttling. J Cell Biol 2006; 173: 319–325.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Nanbo A, Yoshiyama H, Takada K . Epstein-Barr virus-encoded poly(A)-RNA confers resistance to apoptosis mediated through Fas by blocking the PKR pathway in human epithelial intestine 407 cells. J Virol 2005; 79: 12280–12285.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Ruf IK, Lackey KA, Warudkar S, Sample JT . Protection from interferon-induced apoptosis by Epstein-Barr virus small RNAs is not mediated by inhibition of PKR. J Virol 2005; 79: 14562–14569.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Wong HL, Wang X, Cheng RCC, Jin DY, Feng H, Wang Q et al. Stable expression of EBERs in immortalized nasopharyngeal epithelial cells confers resistance to apoptotic stress. Mol Carcinog 2005; 44: 92–101.

    Article  CAS  PubMed  Google Scholar 

  39. Lu PD, Harding HP, Ron D . Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response. J Cell Biol 2004; 167: 27–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Vattem KM, Wek RC . Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc Natl Acad Sci USA 2004; 101: 11269–11274.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Chan CP, Siu KL, Chin KT, Yuen KY, Zheng B, Jin DY . Modulation of the unfolded protein response by the severe acute respiratory syndrome coronavirus spike protein. J Virol 2006; 80: 9279–9287.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Glickman JN, Howe JG, Steitz JA . Structural analyses of EBER1 and EBER2 ribonucleoprotein particles present in Epstein-Barr virus-infected cells. J Virol 1988; 62: 902–911.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Aparicio O, Razquin N, Zaratiegui M, Narvaiza I, Fortes P . Adenovirus virus-associated RNA is processed to functional interfering RNAs involved in virus production. J Virol 2006; 80: 1376–1384.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Bennasser Y, Yeung ML, Jeang KT . HIV-1 TAR RNA subverts RNA interference in transfected cells through sequestration of TAR RNA binding protein, TRBP. J Biol Chem 2006; 281: 27674–27678.

    Article  CAS  PubMed  Google Scholar 

  45. Cheung ST, Huang DP, Hui AB, Lo KW, Ko CW, Tsang YS et al. Nasopharyngeal carcinoma cell line (C666-1) consistently harbouring Epstein-Barr virus. Int J Cancer 1999; 83: 121–126.

    Article  CAS  PubMed  Google Scholar 

  46. Huang DP, Ho JH, Poon YF, Chew EC, Saw D, Lui M et al. Establishment of a cell line (NPC/HK1) from a differentiated squamous carcinoma of the nasopharynx. Int J Cancer 1980; 26: 127–132.

    Article  CAS  PubMed  Google Scholar 

  47. Franz C, Askjaer P, Antonin W, Iglesias CL, Haselmann U, Schelder M et al. Nup155 regulates nuclear envelope and nuclear pore complex formation in nematodes and vertebrates. EMBO J 2005; 24: 3519–3531.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Dumpelmann E, Mittendorf H, Benecke BJ . Efficient transcription of the EBER2 gene depends on the structural integrity of the RNA. RNA 2003; 9: 432–442.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Howe JG, Steitz JA . Localization of Epstein-Barr virus-encoded small RNAs by in situ hybridization. Proc Natl Acad Sci USA 1986; 83: 9006–9010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Paul CP, Good PD, Li SX, Kleihauer A, Rossi JJ, Engelke DR . Localized expression of small RNA inhibitors in human cells. Mol Ther 2003; 7: 237–247.

    Article  CAS  PubMed  Google Scholar 

  51. Robb GB, Brown KM, Khurana J, Rana TM . Specific and potent RNAi in the nucleus of human cells. Nat Struct Mol Biol 2005; 12: 133–137.

    Article  CAS  PubMed  Google Scholar 

  52. Berezhna SY, Supekova L, Supek F, Schultz PG, Deniz AA . siRNA in human cells selectively localizes to target RNA sites. Proc Natl Acad Sci USA 2006; 103: 7682–7687.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Morris KV, Chan SW, Jacobsen SE, Looney DJ . Small interfering RNA-induced transcriptional gene silencing in human cells. Science 2004; 305: 1289–1292.

    Article  CAS  PubMed  Google Scholar 

  54. Weinberg MS, Villeneuve LM, Ehsani A, Amarzguioui M, Aagaard L, Chen Z-X et al. The antisense strand of small interfering RNAs direct histone methylation and transcriptional gene silencing in human cells. RNA 2005; 12: 256–262.

    Article  PubMed  Google Scholar 

  55. Ting AH, Schuebel KE, Herman JG, Baylin SB . Short double-stranded RNA induces transcriptional gene silencing in human cancer cells in the absence of DNA methylation. Nat Genet 2005; 37: 906–910.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Tao Q, Young LS, Woodman CB, Murray PG . Epstein-Barr virus (EBV) and its associated human cancers-genetics, epigenetics, pathobiology and novel therapeutics. Front Biosci 2006; 11: 2672–2713.

    Article  CAS  PubMed  Google Scholar 

  57. Klein E, Kis LL, Klein G . Epstein-Barr virus infection in humans: from harmless to life endangering virus-lymphocyte interactions. Oncogene 2007; 26: 1297–1305.

    Article  CAS  PubMed  Google Scholar 

  58. Wang Y, Xue SA, Hallden G, Francis J, Yuan M, Griffin BE et al. Virus-associated RNA I-deleted adenovirus, a potential oncolytic agent targeting EBV-associated tumors. Cancer Res 2005; 65: 1523–1531.

    Article  CAS  PubMed  Google Scholar 

  59. Nasimuzzaman M, Kuroda M, Dohno S, Yamamoto T, Iwatsuki K, Matsuzaki S et al. Eradication of Epstein-Barr virus episome and associated inhibition of infected tumor cell growth by adenovirus vector-mediated transduction of dominant-negative EBNA1. Mol Ther 2005; 11: 578–590.

    Article  CAS  PubMed  Google Scholar 

  60. Hong M, Murai Y, Kutsuna T, Takahashi H, Nomoto K, Cheng CM et al. Suppression of Epstein-Barr nuclear antigen 1 (EBNA1) by RNA interference inhibits proliferation of EBV-positive Burkitt's lymphoma cells. J Cancer Res Clin Oncol 2006; 132: 1–8.

    Article  CAS  PubMed  Google Scholar 

  61. Yin Q, Flemington EK . siRNAs against the Epstein Barr virus latency replication factor, EBNA1, inhibit its function and growth of EBV-dependent tumor cells. Virology 2006; 346: 385–393.

    Article  CAS  PubMed  Google Scholar 

  62. Nanbo A, Takada K . The role of Epstein-Barr virus-encoded small RNAs (EBERs) in oncogenesis. Rev Med Virol 2002; 12: 321–326.

    Article  CAS  PubMed  Google Scholar 

  63. Zhou Y, Ching YP, Kok KH, Kung HF, Jin DY . Post-transcriptional suppression of gene expression in Xenopus embryos by small interfering RNA. Nucleic Acids Res 2002; 30: 1664–1669.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Siu YT, Chin KT, Siu KL, Choy EYW, Jeang KT, Jin DY . TORC1 and TORC2 coactivators are required for Tax activation of the human T-cell leukemia virus type 1 long terminal repeats. J Virol 2006; 80: 7052–7059.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We thank GJ Hannon, R Agami and IW Mattaj for reagents; KY Yuen for support with quantitative PCR analysis; C-P Chan, K-T Chin and K-L Siu for technical advice; and Y-P Ching, K-T Chin, ACS Chun and Y-T Siu for critical reading of the manuscript. This work was supported by Innovation and Technology Fund of Hong Kong (ITS/112/02), Fogarty International Center of National Institutes of Health (R01 TW06186-01), Hong Kong Research Grants Council (HKU 1/06C), and University of Hong Kong (seed funding program for basic research 2004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D-Y Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choy, EW., Kok, KH., Tsao, S. et al. Utility of Epstein–Barr virus-encoded small RNA promoters for driving the expression of fusion transcripts harboring short hairpin RNAs. Gene Ther 15, 191–202 (2008). https://doi.org/10.1038/sj.gt.3303055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3303055

Keywords

Search

Quick links