Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Insertional mutagenesis and clonal dominance: biological and statistical considerations

Abstract

Improvements of (retroviral) gene transfer vectors, stem cell isolation and culture techniques as well as transduction protocols eventually resulted not only in the successful genetic modification of cells capable of reconstituting the haematopoietic system in various animal models, but also human beings. This was a conditio sine qua non for the successful application of gene therapy for inherited diseases as meanwhile achieved for severe combined immune deficiencies (SCID-X1, ADA-SCID) and chronic granulomatous disease (CGD). Unexpectedly, in long-term animal experiments as well as in the follow up of patients from the CGD trial, haematopoietic clones bearing insertions in certain gene loci became dominant, which was most apparent in the myeloid blood compartment. Accumulating data strongly suggest that this clonal dominance was due to some growth and/or survival advantage conferred by gene-activating or -suppressing effects of the integrated retroviral vector (insertional mutagenesis). Importantly, such induced clonal dominance seems not to lead to malignant transformation of affected cell clones inadvertently. The latter finding has become the basis for the concept of ‘induced haematopoietic stem cells’, a potentially powerful tool to investigate genes involved in the regulation of mechanisms underlying competitive advantages of stem cells, but also in the multi-step nature of malignant transformation. Here we discuss promises and open issues of this concept as well as the important question of common insertion sites statistics and its pitfalls.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Friedmann T, Roblin R . Gene therapy for human genetic disease? Science 1972; 175: 949–955.

    Article  CAS  PubMed  Google Scholar 

  2. Blaese RM, Culver KW, Miller AD, Carter CS, Fleisher T, Clerici M et al. T lymphocyte-directed gene therapy for ADA-SCID: initial trial results after 4 years. Science 1995; 270: 475–480.

    Article  CAS  PubMed  Google Scholar 

  3. Bryder D, Rossi DJ, Weissman IL . Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. Am J Pathol 2006; 169: 338–346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sieburg HB, Cho RH, Muller-Sieburg CE . Limiting dilution analysis for estimating the frequency of hematopoietic stem cells: uncertainty and significance. Exp Hematol 2002; 30: 1436–1443.

    Article  PubMed  Google Scholar 

  5. Abkowitz JL, Catlin SN, McCallie MT, Guttorp P . Evidence that the number of hematopoietic stem cells per animal is conserved in mammals. Blood 2002; 100: 2665–2667.

    Article  CAS  PubMed  Google Scholar 

  6. Gatti RA, Meuwissen HJ, Allen HD, Hong R, Good RA . Immunological reconstitution of sex-linked lymphopenic immunological deficiency. Lancet 1968; 2: 1366–1369.

    Article  CAS  PubMed  Google Scholar 

  7. Hirschhorn R . In vivo reversion to normal of inherited mutations in humans. J Med Genet 2003; 40: 721–728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mankad A, Taniguchi T, Cox B, Akkari Y, Rathbun RK, Lucas L et al. Natural gene therapy in monozygotic twins with Fanconi anemia. Blood 2006; 107: 3084–3090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pingoud A, Silva GH . Precision genome surgery. Nat Biotechnol 2007; 25: 743–744.

    Article  CAS  PubMed  Google Scholar 

  10. Paques F, Duchateau P . Meganucleases and DNA double-strand break-induced recombination: perspectives for gene therapy. Curr Gene Ther 2007; 7: 49–66.

    Article  CAS  PubMed  Google Scholar 

  11. Miller JC, Holmes MC, Wang J, Guschin DY, Lee YL, Rupniewski I et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 2007; 25: 778–785.

    Article  CAS  PubMed  Google Scholar 

  12. Szczepek M, Brondani V, Buchel J, Serrano L, Segal DJ, Cathomen T . Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol 2007; 25: 786–793.

    Article  CAS  PubMed  Google Scholar 

  13. Bhatia M, Wang JC, Kapp U, Bonnet D, Dick JE . Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proc Natl Acad Sci USA 1997; 94: 5320–5325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Larochelle A, Vormoor J, Hanenberg H, Wang JC, Bhatia M, Lapidot T et al. Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nat Med 1996; 2: 1329–1337.

    Article  CAS  PubMed  Google Scholar 

  15. Anderson WF . Gene therapy. The best of times, the worst of times. Science 2000; 288: 627–629.

    Article  CAS  PubMed  Google Scholar 

  16. Schmidt M, Hacein-Bey-Abina S, Wissler M, Carlier F, Lim A, Prinz C et al. Clonal evidence for the transduction of CD34+ cells with lymphomyeloid differentiation potential and self-renewal capacity in the SCID-X1 gene therapy trial. Blood 2005; 105: 2699–2706.

    Article  CAS  PubMed  Google Scholar 

  17. Kustikova OS, Wahlers A, Kühlcke K, Stähle B, Zander AR, Baum C et al. Dose finding with retroviral vectors: correlation of retroviral vector copy numbers in single cells with gene transfer efficiency in a cell population. Blood 2003; 102: 3934–3937.

    Article  CAS  PubMed  Google Scholar 

  18. Fehse B, Kustikova OS, Bubenheim M, Baum C . Pois(s)on—it's a question of dose…. Gene Therapy 2004; 11: 879–881.

    Article  CAS  PubMed  Google Scholar 

  19. Baum C, Düllmann J, Li Z, Fehse B, Meyer J, Williams DA et al. Side effects of retroviral gene transfer into hematopoietic stem cells. Blood 2003; 101: 2099–2114.

    Article  CAS  PubMed  Google Scholar 

  20. Modlich U, Kustikova OS, Schmidt M, Rudolph C, Meyer J, Li Z et al. Leukemias following retroviral transfer of multidrug resistance 1 (MDR1) are driven by combinatorial insertional mutagenesis. Blood 2005; 105: 4235–4246.

    Article  CAS  PubMed  Google Scholar 

  21. Baum C, Kustikova O, Modlich U, Li Z, Fehse B . Mutagenesis and oncogenesis by chromosomal insertion of gene transfer vectors. Hum Gene Ther 2006; 17: 253–263.

    Article  CAS  PubMed  Google Scholar 

  22. Hacein-Bey-Abina S, Le Deist F, Carlier F, Bouneaud C, Hue C, De Villartay JP et al. Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 2002; 346: 1185–1193.

    Article  CAS  PubMed  Google Scholar 

  23. Aiuti A, Slavin S, Aker M, Ficara F, Deola S, Mortellaro A et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 2002; 296: 2410–2413.

    Article  CAS  PubMed  Google Scholar 

  24. Gaspar HB, Bjorkegren E, Parsley K, Gilmour KC, King D, Sinclair J et al. Successful reconstitution of immunity in ADA-SCID by stem cell gene therapy following cessation of PEG-ADA and use of mild preconditioning. Mol Ther 2006; 14: 505–513.

    Article  CAS  PubMed  Google Scholar 

  25. Ott MG, Schmidt M, Schwarzwaelder K, Stein S, Siler U, Koehl U et al. Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med 2006; 12: 401–409.

    Article  CAS  PubMed  Google Scholar 

  26. Hacein-Bey-Abina S, von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302: 415–419.

    Article  CAS  PubMed  Google Scholar 

  27. Li Z, Düllmann J, Schiedlmeier B, Schmidt M, von Kalle C, Meyer J et al. Murine leukemia induced by retroviral gene marking. Science 2002; 296: 497.

    Article  CAS  PubMed  Google Scholar 

  28. Kustikova O, Fehse B, Modlich U, Yang M, Düllmann J, Kamino K et al. Clonal dominance of hematopoietic stem cells triggered by retroviral gene marking. Science 2005; 308: 1171–1174.

    Article  CAS  PubMed  Google Scholar 

  29. McMichael AJ, Willcox N . Radioactive antigen suicide of an anti-DNP (2,4-dinitrophenyl) clone. I. Recovery and escape from clonal dominance by suicide resistant precursors. Eur J Immunol 1975; 5: 58–64.

    Article  CAS  PubMed  Google Scholar 

  30. Fanning TG, Vassos AB, Cardiff RD . Methylation and amplification of mouse mammary tumor virus DNA in normal, premalignant, and malignant cells of GR/A mice. J Virol 1982; 41: 1007–1013.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Abkowitz JL, Fialkow PJ, Niebrugge DJ, Raskind WH, Adamson JW . Pancytopenia as a clonal disorder of a multipotent hematopoietic stem cell. J Clin Invest 1984; 73: 258–261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Green PL, Kaehler DA, Risser R . Clonal dominance and progression in Abelson murine leukemia virus lymphomagenesis. J Virol 1987; 61: 2192–2197.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kerbel RS, Waghorne C, Korczak B, Lagarde A, Breitman ML . Clonal dominance of primary tumours by metastatic cells: genetic analysis and biological implications. Cancer Surv 1988; 7: 597–629.

    CAS  PubMed  Google Scholar 

  34. Cornetta K, Moore A, Johannessohn M, Sledge GW . Clonal dominance detected in metastases but not primary tumors of retrovirally marked human breast carcinoma injected into nude mice. Clin Exp Metastasis 1994; 12: 3–12.

    Article  CAS  PubMed  Google Scholar 

  35. Rosenberg SA, Aebersold P, Cornetta K, Kasid A, Morgan RA, Moen R et al. Gene transfer into humans—immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N Engl J Med 1990; 323: 570–578.

    Article  CAS  PubMed  Google Scholar 

  36. Tey SK, Brenner MK . The continuing contribution of gene marking to cell and gene therapy. Mol Ther 2007; 15: 666–676.

    Article  CAS  PubMed  Google Scholar 

  37. Abkowitz JL, Catlin SN, Guttorp P . Evidence that hematopoiesis may be a stochastic process in vivo. Nat Med 1996; 2: 190–197.

    Article  CAS  PubMed  Google Scholar 

  38. Abkowitz JL, Catlin SN, Guttorp P . Strategies for hematopoietic stem cell gene therapy: insights from computer simulation studies. Blood 1997; 89: 3192–3198.

    CAS  PubMed  Google Scholar 

  39. Abkowitz JL, Golinelli D, Harrison DE, Guttorp P . In vivo kinetics of murine hematopoietic stem cells. Blood 2000; 96: 3399–3405.

    CAS  PubMed  Google Scholar 

  40. Abkowitz JL, Golinelli D, Guttorp P . Strategies to expand transduced hematopoietic stem cells in vivo. Mol Ther 2004; 9: 566–576.

    Article  CAS  PubMed  Google Scholar 

  41. Catlin SN, Guttorp P, Abkowitz JL . The kinetics of clonal dominance in myeloproliferative disorders. Blood 2005; 106: 2688–2692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Roeder I, Horn M, Glauche I, Hochhaus A, Mueller MC, Loeffler M . Dynamic modeling of imatinib-treated chronic myeloid leukemia: functional insights and clinical implications. Nat Med 2006; 12: 1181–1184.

    Article  CAS  PubMed  Google Scholar 

  43. Muller-Sieburg CE, Cho RH, Thoman M, Adkins B, Sieburg HB . Deterministic regulation of hematopoietic stem cell self-renewal and differentiation. Blood 2002; 100: 1302–1309.

    CAS  PubMed  Google Scholar 

  44. Roeder I, Kamminga LM, Braesel K, Dontje B, de Haan G, Loeffler M . Competitive clonal hematopoiesis in mouse chimeras explained by a stochastic model of stem cell organization. Blood 2005; 105: 609–616.

    Article  CAS  PubMed  Google Scholar 

  45. Sieburg HB, Cho RH, Dykstra B, Uchida N, Eaves CJ, Muller-Sieburg CE . The hematopoietic stem compartment consists of a limited number of discrete stem cell subsets. Blood 2006; 107: 2311–2316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Loeffler M, Birke A, Winton D, Potten CS . Somatic mutation, monoclonality and models of stem cell organization in the intestinal crypt. J Theor Biol 1993; 160: 471–491.

    Article  CAS  PubMed  Google Scholar 

  47. Loeffler M, Bratke T, Paulus U, Li YQ, Potten CS . Clonality and life cycles of intestinal crypts explained by a state dependent stochastic model of epithelial stem cell organization. J Theor Biol 1997; 186: 41–54.

    Article  CAS  PubMed  Google Scholar 

  48. Loeffler M, Roeder I . Tissue stem cells: definition, plasticity, heterogeneity, self organization and models—a conceptual approach. Cells Tissues Organs 2002; 171: 8–26.

    Article  PubMed  Google Scholar 

  49. Meineke FA, Potten CS, Loeffler M . Cell migration and organization in the intestinal crypt using a lattice-free model. Cell Prolif 2001; 34: 253–266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Roeder I, Braesel K, Lorenz R, Loeffler M . Stem cell fate analysis revisited: interpretation of individual clone dynamics in the light of a new paradigm of stem cell organization. J Biomed Biotechnol 2007; 2007: 84656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Winton DJ, Blount MA, Ponder BA . A clonal marker induced by mutation in mouse intestinal epithelium. Nature 1988; 333: 463–466.

    Article  CAS  PubMed  Google Scholar 

  52. Park HS, Goodlad RA, Wright NA . Crypt fission in the small intestine and colon. A mechanism for the emergence of G6PD locus-mutated crypts after treatment with mutagens. Am J Pathol 1995; 147: 1416–1427.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Bjerknes M, Cheng H . Modulation of specific intestinal epithelial progenitors by enteric neurons. Proc Natl Acad Sci USA 2001; 98: 12497–12502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Potten CS, Booth C, Pritchard DM . The intestinal epithelial stem cell: the mucosal governor. Int J Exp Pathol 1997; 78: 219–243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. van der Putten H, Quint W, van Raaij J, Maandag ER, Verma IM, Berns A . M-MuLV-induced leukemogenesis: integration and structure of recombinant proviruses in tumors. Cell 1981; 24: 729–739.

    Article  CAS  PubMed  Google Scholar 

  56. Mikkers H, Berns A . Retroviral insertional mutagenesis: tagging cancer pathways. Adv Cancer Res 2003; 88: 53–99.

    CAS  PubMed  Google Scholar 

  57. Kohn DB, Sadelain M, Dunbar C, Bodine D, Kiem HP, Candotti F et al. American Society of Gene Therapy (ASGT) ad hoc subcommittee on retroviral-mediated gene transfer to hematopoietic stem cells. Mol Ther 2003; 8: 180–187.

    Article  CAS  PubMed  Google Scholar 

  58. Baum C, von Kalle C, Staal FJ, Li Z, Fehse B, Schmidt M et al. Chance or necessity? Insertional mutagenesis in gene therapy and its consequences. Mol Ther 2004; 9: 5–13.

    Article  CAS  PubMed  Google Scholar 

  59. ##www.esgct.org/upload/4th_CaseofLeukemial.pdf.

  60. Davé U, Jenkins NA, Copeland NG . Gene therapy insertional mutagenesis insights. Science 2004; 303: 333.

    Article  PubMed  Google Scholar 

  61. Kohn DB, Sadelain M, Glorioso JC . Occurrence of leukaemia following gene therapy of X-linked SCID. Nat Rev Cancer 2003; 3: 477–488.

    Article  CAS  PubMed  Google Scholar 

  62. Nienhuis AW, Dunbar CE, Sorrentino BP . Genotoxicity of retroviral integration in hematopoietic cells. Mol Ther 2006; 13: 1031–1049.

    Article  CAS  PubMed  Google Scholar 

  63. Hahn WC, Weinberg RA . Modelling the molecular circuitry of cancer. Nature Rev Cancer 2002; 2: 331–341.

    Article  CAS  Google Scholar 

  64. Kustikova O, Geiger H, Li Z, Brugman MH, Chambers SM, Shaw CA et al. Retroviral vector insertion sites associated with dominant hematopoietic clones mark ‘stemness’ pathways. Blood 2007; 109: 1897–1907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Calmels B, Ferguson C, Laukkanen MO, Adler R, Faulhaber M, Kim HJ et al. Recurrent retroviral vector integration at the Mds1/Evi1 locus in nonhuman primate hematopoietic cells. Blood 2005; 106: 2530–2533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bozorgmehr F, Laufs S, Sellers SE, Roeder I, Zeller WJ, Dunbar CE et al. No evidence of clonal dominance in primates up to four years following transplantation of multidrug resistance 1 retrovirally-transduced long-term repopulating cells. Stem Cells 2007; 25: 2610–2618.

    Article  CAS  PubMed  Google Scholar 

  67. Du Y, Jenkins NA, Copeland NG . Insertional mutagenesis identifies genes that promote the immortalization of primary bone marrow progenitor cells. Blood 2005; 106: 3932–3939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Modlich U, Bohne J, Schmidt M, von Kalle C, Knöss S, Schambach A et al. Cell culture assays reveal the importance of retroviral vector design for insertional genotoxicity. Blood 2006; 108: 2545–2553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Greenberger JS, Shadduck RK, Jaenisch R, Waheed A, Sakakeeny MA . Effects of murine leukemia virus infection on long-term hematopoiesis in vitro emphasized by increased survival of bone marrow cultures derived from BALB/Mo mice. Cancer Res 1981; 41: 3556–3565.

    CAS  PubMed  Google Scholar 

  70. Cattoglio C, Facchini G, Sartori D, Antonelli A, Miccio A, Cassani B et al. Hot spots of retroviral integration in human CD34+ hematopoietic cells. Blood 2007; 110: 1770–1778.

    Article  CAS  PubMed  Google Scholar 

  71. Takahashi K, Yamanaka S . Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663–676.

    Article  CAS  PubMed  Google Scholar 

  72. Okita K, Ichisaka T, Yamanaka S . Generation of germline-competent induced pluripotent stem cells. Nature 2007; 448: 313–317.

    Article  CAS  PubMed  Google Scholar 

  73. Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 2007; 448: 318–324.

    Article  CAS  PubMed  Google Scholar 

  74. Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, Arnold K et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 2007; 1: 55–70.

    Article  CAS  PubMed  Google Scholar 

  75. Evans-Galea MV, Wielgosz MM, Hanawa H, Srivastava DK, Nienhuis AW . Suppression of clonal dominance in cultured human lymphoid cells by addition of the cHS4 insulator to a lentiviral vector. Mol Ther 2007; 15: 801–809.

    Article  CAS  PubMed  Google Scholar 

  76. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367: 645–648.

    Article  CAS  PubMed  Google Scholar 

  77. Wang JC, Dick JE . Cancer stem cells: lessons from leukemia. Trends Cell Biol 2005; 15: 494–501.

    Article  CAS  PubMed  Google Scholar 

  78. Wicha MS, Liu S, Dontu G . Cancer stem cells: an old idea—a paradigm shift. Cancer Res 2006; 66: 1883–1890.

    Article  CAS  PubMed  Google Scholar 

  79. Laufs S, Nagy KZ, Giordano FA, Hotz-Wagenblatt A, Zeller WJ, Fruehauf S . Insertion of retroviral vectors in NOD/SCID repopulating human peripheral blood progenitor cells occurs preferentially in the vicinity of transcription start regions and in introns. Mol Ther 2004; 10: 874–881.

    Article  CAS  PubMed  Google Scholar 

  80. Wu X, Luke BT, Burgess SM . Redefining the common insertion site. Virology 2006; 344: 292–295.

    Article  CAS  PubMed  Google Scholar 

  81. Singh S . Fermats letzter Satz. Deutscher Taschenbuch Verlag GmbH & Co. KG: München, 2000, pp 66–67. English original edition: Singh S. Fermat's Last Theorem. Fourth Estate: London, 1997.

    Google Scholar 

  82. Wu X, Li Y, Crise B, Burgess SM . Transcription start regions in the human genome are favored targets for MLV integration. Science 2003; 300: 1749–1751.

    Article  CAS  PubMed  Google Scholar 

  83. Schroder AR, Shinn P, Chen H, Berry C, Ecker JR, Bushman F . HIV-1 integration in the human genome favors active genes and local hotspots. Cell 2002; 110: 521–529.

    Article  CAS  PubMed  Google Scholar 

  84. Abel U, Deichmann A, Bartholomae C, Schwarzwaelder K, Glimm H, Howe S et al. Real-time definition of non-randomness in the distribution of genomic events. PLoS ONE 2007; 2: e570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Deutsche Forschungsgemeinschaft DFG within the Priority Program SPP1230 by grants to BF (FE568/9-1) and IR (RO 3500/1-1). BF's professorship has been funded by the Deutsche Krebshilfe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Fehse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fehse, B., Roeder, I. Insertional mutagenesis and clonal dominance: biological and statistical considerations. Gene Ther 15, 143–153 (2008). https://doi.org/10.1038/sj.gt.3303052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3303052

Keywords

This article is cited by

Search

Quick links