Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Utility of TK/GCV in the context of highly effective oncolysis mediated by a serotype 3 receptor targeted oncolytic adenovirus

Abstract

Arming oncolytic adenoviruses with therapeutic transgenes and enhancing transduction of tumor cells are useful strategies for eradication of advanced tumor masses. Herpes simplex virus thymidine kinase (TK) together with ganciclovir (GCV) has been promising when coupled with viruses featuring low oncolytic potential, but their utility is unknown in the context of highly effective infectivity-enhanced viruses. We constructed Ad5/3-Δ24-TK-GFP, a serotype 3 receptor-targeted, Rb/p16 pathway-selective oncolytic adenovirus, where a fusion gene encoding TK and green fluorescent protein (GFP) was inserted into 6.7K/gp19K-deleted E3 region. Ad5/3-Δ24-TK-GFP killed ovarian cancer cells effectively, which correlated with GFP expression. Delivery of GCV immediately after infection abrogated viral replication, which might have utility as a safety switch. Due to the bystander effect, killing of some cell lines in vitro was enhanced by GCV regardless of timing. In murine models of metastatic ovarian cancer, Ad5/3-Δ24-TK-GFP improved antitumor efficacy over the respective replication-deficient virus with GCV. However, GCV did not further enhance efficacy of Ad5/3-Δ24-TK-GFP in vivo. Simultaneous detection of tumor load and virus replication with bioluminescence and fluorescence imaging provided insight into the in vivo kinetics of oncolysis. In summary, TK/GCV may not add antitumor activity in the context of highly potent oncolysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Hermiston T . A demand for next-generation oncolytic adenoviruses. Curr Opin Mol Ther 2006; 8: 322–330.

    CAS  PubMed  Google Scholar 

  2. Liu TC, Galanis E, Kirn D . Clinical trial results with oncolytic virotherapy: a century of promise, a decade of progress. Nat Clin Pract Oncol 2007; 4: 101–117.

    Article  CAS  PubMed  Google Scholar 

  3. Douglas JT, Kim M, Sumerel LA, Carey DE, Curiel DT . Efficient oncolysis by a replicating adenovirus (ad) in vivo is critically dependent on tumor expression of primary ad receptors. Cancer Res 2001; 61: 813–817.

    CAS  PubMed  Google Scholar 

  4. Bauerschmitz GJ, Barker SD, Hemminki A . Adenoviral gene therapy for cancer: from vectors to targeted and replication competent agents (review). Int J Oncol 2002; 21: 1161–1174.

    CAS  PubMed  Google Scholar 

  5. Kanerva A, Hemminki A . Modified adenoviruses for cancer gene therapy. Int J Cancer 2004; 110: 475–480.

    Article  CAS  PubMed  Google Scholar 

  6. Stevenson SC, Rollence M, White B, Weaver L, McClelland A . Human adenovirus serotypes 3 and 5 bind to two different cellular receptors via the fiber head domain. J Virol 1995; 69: 2850–2857.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kanerva A, Mikheeva GV, Krasnykh V, Coolidge CJ, Lam JT, Mahasreshti PJ et al. Targeting adenovirus to the serotype 3 receptor increases gene transfer efficiency to ovarian cancer cells. Clin Cancer Res 2002; 8: 275–280.

    CAS  PubMed  Google Scholar 

  8. Haviv YS, Blackwell JL, Kanerva A, Nagi P, Krasnykh V, Dmitriev I et al. Adenoviral gene therapy for renal cancer requires retargeting to alternative cellular receptors. Cancer Res 2002; 62: 4273–4281.

    CAS  PubMed  Google Scholar 

  9. Ulasov IV, Tyler MA, Zheng S, Han Y, Lesniak MS . CD46 represents a target for adenoviral gene therapy of malignant glioma. Hum Gene Ther 2006; 17: 556–564.

    Article  CAS  PubMed  Google Scholar 

  10. Tuve S, Wang H, Ware C, Liu Y, Gaggar A, Bernt K et al. A new group B adenovirus receptor is expressed at high levels on human stem and tumor cells. J Virol 2006; 80: 12109–12120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sauthoff H, Hu J, Maca C, Goldman M, Heitner S, Yee H et al. Intratumoral spread of wild-type adenovirus is limited after local injection of human xenograft tumors: virus persists and spreads systemically at late time points. Hum Gene Ther 2003; 14: 425–433.

    Article  CAS  PubMed  Google Scholar 

  12. Hermiston TW, Kuhn I . Armed therapeutic viruses: strategies and challenges to arming oncolytic viruses with therapeutic genes. Cancer Gene Ther 2002; 9: 1022–1035.

    Article  CAS  PubMed  Google Scholar 

  13. Wildner O, Morris JC, Vahanian NN, Ford Jr H, Ramsey WJ, Blaese RM . Adenoviral vectors capable of replication improve the efficacy of HSVtk/GCV suicide gene therapy of cancer. Gene Therapy 1999; 6: 57–62.

    Article  CAS  PubMed  Google Scholar 

  14. Wildner O, Blaese RM, Morris JC . Therapy of colon cancer with oncolytic adenovirus is enhanced by the addition of herpes simplex virus-thymidine kinase. Cancer Res 1999; 59: 410–413.

    CAS  PubMed  Google Scholar 

  15. van Dillen IJ, Mulder NH, Vaalburg W, de Vries EF, Hospers GA . Influence of the bystander effect on HSV-tk/GCV gene therapy. A review. Curr Gene Ther 2002; 2: 307–322.

    Article  CAS  PubMed  Google Scholar 

  16. Fueyo J, Gomez-Manzano C, Alemany R, Lee PS, McDonnell TJ, Mitlianga P et al. A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene 2000; 19: 2–12.

    Article  CAS  PubMed  Google Scholar 

  17. Heise C, Hermiston T, Johnson L, Brooks G, Sampson-Johannes A, Williams A et al. An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nat Med 2000; 6: 1134–1139.

    Article  CAS  PubMed  Google Scholar 

  18. Sherr CJ . Cancer cell cycles. Science 1996; 274: 1672–1677.

    Article  CAS  PubMed  Google Scholar 

  19. D'Andrilli G, Kumar C, Scambia G, Giordano A . Cell cycle genes in ovarian cancer: steps toward earlier diagnosis and novel therapies. Clin Cancer Res 2004; 10: 8132–8141.

    Article  CAS  PubMed  Google Scholar 

  20. Hawkins LK, Johnson L, Bauzon M, Nye JA, Castro D, Kitzes GA et al. Gene delivery from the E3 region of replicating human adenovirus: evaluation of the 6.7 K/gp19K region. Gene Therapy 2001; 8: 1123–1131.

    Article  CAS  PubMed  Google Scholar 

  21. Kanerva A, Zinn KR, Peng KW, Ranki T, Kangasniemi L, Chaudhuri TR et al. Noninvasive dual modality in vivo monitoring of the persistence and potency of a tumor targeted conditionally replicating adenovirus. Gene Therapy 2005; 12: 87–94.

    Article  CAS  PubMed  Google Scholar 

  22. Hakkarainen T, Wahlfors T, Merilainen O, Loimas S, Hemminki A, Wahlfors J . VP22 does not significantly enhance enzyme prodrug cancer gene therapy as a part of a VP22-HSVTk-GFP triple fusion construct. J Gene Med 2005; 7: 898–907.

    Article  CAS  PubMed  Google Scholar 

  23. Nanda D, Vogels R, Havenga M, Avezaat CJ, Bout A, Smitt PS . Treatment of malignant gliomas with a replicating adenoviral vector expressing herpes simplex virus-thymidine kinase. Cancer Res 2001; 61: 8743–8750.

    CAS  PubMed  Google Scholar 

  24. Rogulski KR, Wing MS, Paielli DL, Gilbert JD, Kim JH, Freytag SO . Double suicide gene therapy augments the antitumor activity of a replication-competent lytic adenovirus through enhanced cytotoxicity and radiosensitization. Hum Gene Ther 2000; 11: 67–76.

    Article  CAS  PubMed  Google Scholar 

  25. Morris JC, Wildner O . Therapy of head and neck squamous cell carcinoma with an oncolytic adenovirus expressing HSV-tk. Mol Ther 2000; 1: 56–62.

    Article  CAS  PubMed  Google Scholar 

  26. Wildner O, Morris JC . The role of the E1B 55 kDa gene product in oncolytic adenoviral vectors expressing herpes simplex virus-tk: assessment of antitumor efficacy and toxicity. Cancer Res 2000; 60: 4167–4174.

    CAS  PubMed  Google Scholar 

  27. Lambright ES, Amin K, Wiewrodt R, Force SD, Lanuti M, Propert KJ et al. Inclusion of the herpes simplex thymidine kinase gene in a replicating adenovirus does not augment antitumor efficacy. Gene Therapy 2001; 8: 946–953.

    Article  CAS  PubMed  Google Scholar 

  28. Hakkarainen T, Hemminki A, Curiel DT, Wahlfors J . A conditionally replicative adenovirus that codes for a TK-GFP fusion protein (Ad5-Δ24TK-GFP) for evaluation of the potency of oncolytic virotherapy combined with molecular chemotherapy. Int J Mol Med 2006; 18: 751–759.

    CAS  PubMed  Google Scholar 

  29. Barker DD, Berk AJ . Adenovirus proteins from both E1B reading frames are required for transformation of rodent cells by viral infection and DNA transfection. Virology 1987; 156: 107–121.

    Article  CAS  PubMed  Google Scholar 

  30. Harada JN, Berk AJ . p53-Independent and -dependent requirements for E1B-55 K in adenovirus type 5 replication. J Virol 1999; 73: 5333–5344.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Goodrum FD, Ornelles DA . p53 status does not determine outcome of E1B 55-kilodalton mutant adenovirus lytic infection. J Virol 1998; 72: 9479–9490.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Rothmann T, Hengstermann A, Whitaker NJ, Scheffner M, zur Hausen H . Replication of ONYX-015, a potential anticancer adenovirus, is independent of p53 status in tumor cells. J Virol 1998; 72: 9470–9478.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kirn D . Clinical research results with dl1520 (Onyx-015), a replication-selective adenovirus for the treatment of cancer: what have we learned? Gene Therapy 2001; 8: 89–98.

    Article  CAS  PubMed  Google Scholar 

  34. Kanerva A, Zinn KR, Chaudhuri TR, Lam JT, Suzuki K, Uil TG et al. Enhanced therapeutic efficacy for ovarian cancer with a serotype 3 receptor-targeted oncolytic adenovirus. Mol Ther 2003; 8: 449–458.

    Article  CAS  PubMed  Google Scholar 

  35. Kangasniemi L, Kiviluoto T, Kanerva A, Raki M, Ranki T, Sarkioja M et al. Infectivity-enhanced adenoviruses deliver efficacy in clinical samples and orthotopic models of disseminated gastric cancer. Clin Cancer Res 2006; 12: 3137–3144.

    Article  CAS  PubMed  Google Scholar 

  36. Sarkioja M, Kanerva A, Salo J, Kangasniemi L, Eriksson M, Raki M et al. Noninvasive imaging for evaluation of the systemic delivery of capsid-modified adenoviruses in an orthotopic model of advanced lung cancer. Cancer 2006; 107: 1578–1588.

    Article  PubMed  Google Scholar 

  37. Hemminki A, Belousova N, Zinn KR, Liu B, Wang M, Chaudhuri TR et al. An adenovirus with enhanced infectivity mediates molecular chemotherapy of ovarian cancer cells and allows imaging of gene expression. Mol Ther 2001; 4: 223–231.

    Article  CAS  PubMed  Google Scholar 

  38. Erbs P, Regulier E, Kintz J, Leroy P, Poitevin Y, Exinger F et al. In vivo cancer gene therapy by adenovirus-mediated transfer of a bifunctional yeast cytosine deaminase/uracil phosphoribosyltransferase fusion gene. Cancer Res 2000; 60: 3813–3822.

    CAS  PubMed  Google Scholar 

  39. Boland A, Ricard M, Opolon P, Bidart JM, Yeh P, Filetti S et al. Adenovirus-mediated transfer of the thyroid sodium/iodide symporter gene into tumors for a targeted radiotherapy. Cancer Res 2000; 60: 3484–3492.

    CAS  PubMed  Google Scholar 

  40. Oosterhoff D, Pinedo HM, Witlox MA, Carette JE, Gerritsen WR, van Beusechem VW . Gene-directed enzyme prodrug therapy with carboxylesterase enhances the anticancer efficacy of the conditionally replicating adenovirus AdDelta24. Gene Therapy 2005; 12: 1011–1018.

    Article  CAS  PubMed  Google Scholar 

  41. Lukashev AN, Fuerer C, Chen MJ, Searle P, Iggo R . Late expression of nitroreductase in an oncolytic adenovirus sensitizes colon cancer cells to the prodrug CB1954. Hum Gene Therapy 2005; 16: 1473–1483.

    Article  CAS  Google Scholar 

  42. Ramesh N, Ge Y, Ennist DL, Zhu M, Mina M, Ganesh S et al. CG0070, a conditionally replicating granulocyte macrophage colony-stimulating factor – armed oncolytic adenovirus for the treatment of bladder cancer. Clin Cancer Res 2006; 12: 305–313.

    Article  CAS  PubMed  Google Scholar 

  43. Loimas S, Wahlfors J, Janne J . Herpes simplex virus thymidine kinase-green fluorescent protein fusion gene: new tool for gene transfer studies and gene therapy. BioTechniques 1998; 24: 614–618.

    Article  CAS  PubMed  Google Scholar 

  44. He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B . A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA 1998; 95: 2509–2514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Sari Pesonen for statistical advice. This work was supported by Helsinki Biomedical Graduate School, University of Helsinki, EU FP6 THERADPOX and APOTHERAPY, HUCH Research Funds (EVO), Sigrid Juselius Foundation, Academy of Finland, Emil Aaltonen Foundation, Finnish Cancer Society, Biomedicum Helsinki Foundation, Research Foundation for Virus Diseases and Schering Research Foundation/Finnish Oncology Association (unrestricted).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Hemminki.

Additional information

Supplementary information accompanies the paper on Gene Therapy web site (http://www.nature.com/gt)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raki, M., Hakkarainen, T., Bauerschmitz, G. et al. Utility of TK/GCV in the context of highly effective oncolysis mediated by a serotype 3 receptor targeted oncolytic adenovirus. Gene Ther 14, 1380–1388 (2007). https://doi.org/10.1038/sj.gt.3302992

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302992

Keywords

This article is cited by

Search

Quick links