Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Injection of IL-12 gene-transduced dendritic cells into mouse liver tumor lesions activates both innate and acquired immunity

Abstract

Dendritic cell (DC)-based vaccines have been applied clinically in the setting of advanced-stage cancer. To date, the clinical efficacy of these vaccines has been limited, possibly owing to the impairment of transferred DC function in cancer-bearing patients. In this study, we examined the therapeutic efficacy of interleukin-12 (IL-12) gene-transfected DCs isolated from tumor-bearing hosts against liver tumor. The endogenous DCs isolated from subcutaneous (s.c.) CMS4 tumor-bearing mice (CMS4DC) exhibited decreased expression levels of antigen-presenting molecules and low-allostimulatory capacity. CMS4DC produced less IL-12p70 than DCs isolated from normal mice. Adenoviral transfection of IL-12 gene into CMS4DC (AdIL12DC) restored the expression of antigen-presenting molecules and allostimulatory capacity. Intratumoral (i.t.) delivery of AdIL12DC resulted in complete rejection of intrahepatic CMS4 tumors and activation of innate and acquired immune cells. Antibody depletion studies revealed that both CD4+ and CD8+ T cells as well as natural killer cells play critical roles in mediating liver tumor rejection. I.t. treatment of AdIL12DC resulted in long-term protection against s.c. rechallenge with CMS4 tumor cells. These results revealed that IL-12 gene transfer is capable of improving the impaired functions of DC isolated from tumor-bearing hosts, and support the preclinical therapeutic efficacy of intrahepatic injection of AdIL12DC.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Hart DN . Dendritic cells: unique leukocyte populations which control the primary immune response. Blood 1997; 90: 3245–3287.

    CAS  PubMed  Google Scholar 

  2. Fields RC, Shimizu K, Mule JJ . Murine dendritic cells pulsed with whole tumor lysates mediate potent antitumor immune response in vitro and in vivo. Proc Natl Acad Sci USA 1998; 95: 9482–9487.

    Article  CAS  PubMed  Google Scholar 

  3. Mayordomo JI, Zorina T, Storkus WJ, Zitvogel L, Celluzzi C, Falo Jr LD et al. Bone marrow-derived dendritic cells pulsed with synthetic tumor peptide elicits protective and therapeutic antitumor immunity. Nat Med 1995; 12: 1297–1302.

    Article  Google Scholar 

  4. Paglia P, Chiodoni C, Rodolfo M, Colombo MP . Murine dendritic cells loaded in vitro with soluble protein prime cytotoxic T lymphocytes against tumor antigen in vivo. J Exp Med 1996; 183: 317–322.

    Article  CAS  PubMed  Google Scholar 

  5. Boczkowski D, Nair SK, Snyder D, Gilboa E . Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J Exp Med 1996; 184: 465–472.

    Article  CAS  PubMed  Google Scholar 

  6. Condon C, Watkins SC, Celluzzi CM, Thompson K, Falo Jr LD . DNA-based immunization by in vivo transfection of dendritic cells. Nat Med 1996; 2: 1122–1128.

    Article  CAS  PubMed  Google Scholar 

  7. Hsu FJ, Benike C, Fagnoni F, Liles TM, Czerwinski D, Taidi B et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med 1996; 2: 52–58.

    Article  CAS  PubMed  Google Scholar 

  8. Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 1998; 4: 328–332.

    Article  CAS  PubMed  Google Scholar 

  9. Salgaller ML, Tjoa BA, Lodge PA, Ragde H, Kenny G, Boynton A et al. Dendritic cell-based immunotherapy of prostate cancer. Crit Rev Immunol 1998; 18: 109–119.

    Article  CAS  PubMed  Google Scholar 

  10. Kugler A, Stuhler G, Walden P, Zoller G, Zobywalski A, Brossart P et al. Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids. Nat Med 2000; 6: 332–336.

    Article  CAS  PubMed  Google Scholar 

  11. Ratta M, Fagnoni F, Curti A, Vescovini R, Sansoni P, Oliviero B et al. Dendritic cells are functionally defective in multiple myeloma: the role of interleukin-6. Blood 2002; 100: 230–237.

    Article  CAS  PubMed  Google Scholar 

  12. Gervais A, Leveque J, Bouet-Toussaint F, Burtin F, Lesimple T, Sulpice L et al. Dendritic cells are defective in breast cancer patients: a potential role for polyamine in this immunodeficiency. Breast Cancer Res 2005; 7: R326–R335.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kobayashi M, Fitz L, Ryan M, Hewick RM, Clark SC, Chan S et al. Identification and purification of natural killer cell stimulatory factors (NKSF), a cytokine with multiple biological effects on human lymphocytes. J Exp Med 1989; 170: 827–845.

    Article  CAS  PubMed  Google Scholar 

  14. Gately MK, Wolitzky AG, Quinn PM, Chizzonite R . Regulation of human cytolytic lymphocyte responses by interleukin-12. Cell Immunol 1992; 143: 127–142.

    Article  CAS  PubMed  Google Scholar 

  15. Trinchieri G . Interleukin-12 and its role in generation of TH1 cells. Immunol Today 1993; 14: 335–337.

    Article  CAS  PubMed  Google Scholar 

  16. Tahara H, Zitvogel L, Storkus WJ, Zeh III HJ, McKinney TG, Schreiber RD et al. Effective eradication of established murine tumors with IL-12 gene therapy using a polycistronic retroviral vector. J Immunol 1995; 154: 6466–6474.

    CAS  PubMed  Google Scholar 

  17. Tatsumi T, Huang J, Gooding WE, Gambotto A, Robbins PD, Vujanovic NL et al. Intratumoral delivery of dendritic cells engineered to secrete both interleukin(IL)-12 and IL-18 effectively treats local and distant disease in association with broadly reactive Tc1-type immunity. Cancer Res 2003; 63: 6378–6386.

    CAS  PubMed  Google Scholar 

  18. Cerundolo V, Hermans IF, Salio M . Dendritic cells: a journey from laboratory to clinic. Nat Immunol 2004; 5: 7–10.

    Article  CAS  PubMed  Google Scholar 

  19. Grohmann U, Belladonna ML, Bianchi R, Orabona C, Ayroldi E, Fioretti MC et al. IL-12 acts directly on DC to promote nuclear localization of NF-kappaB and primes DC for IL-12 production. Immunity 1998; 9: 315–323.

    Article  CAS  PubMed  Google Scholar 

  20. Fernandez NC, Lozier A, Flament C, Ricciardi-Castagnoli P, Beller D, Suter M et al. Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nat Med 1999; 5: 405–411.

    Article  CAS  PubMed  Google Scholar 

  21. Gerosa F, Baldani-Guerra B, Nisii C, Marchesini V, Carra G, Trinchieri G et al. Reciprocal activating interaction between natural killer cells and dendritic cells. J Exp Med 2002; 195: 327–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Miller G, Lahrs S, Dematteo RP . Overexpression of interleukin-12 enables dendritic cells to activate NK cells and confer systemic antitumor immunity. FASEB J 2003; 17: 728–730.

    Article  CAS  PubMed  Google Scholar 

  23. Nielsch U, Zimmer SG, Babiss LE . Changes in NF-κB and ISGF3 DNA binding activities are responsible for differences in MHC and β-IFN gene expression in Ad5- versus Ad12-transformed cells. EMBO J 1991; 10: 4169–4175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Osaki T, Peron JM, Cai Q, Okamura H, Robbins PD, Kurimoto M et al. IFN-γ-inducing factor/IL-18 administration mediates IFN-γ- and IL-12-independent antitumor effects. J Immunol 1998; 160: 1742–1749.

    CAS  PubMed  Google Scholar 

  25. Car BD, Eng VM, Lipman JM, Anderson TD . The toxicology of interleukin-12: a review. Toxicol Pathol 1999; 27: 58–63.

    Article  CAS  PubMed  Google Scholar 

  26. Furumoto K, Arii S, Yamasaki S, Mizumoto M, Mori A, Inoue N et al. Spleen-derived dendrtic cells engineered to enhance interleukin-12 production elicit therapeutic antitumor immune responses. Int J Cancer 2000; 87: 665–672.

    Article  CAS  PubMed  Google Scholar 

  27. Zitvogel L, Mayordomo JI, Tjandrawan T, DeLeo AB, Clarke MR, Lotze MT et al. Therapy of murine tumors with tumor peptide-pulsed dendritic cells: Dependence on T cells, B7 costimulation, and T helper cell 1-associated cytokines. J Exp Med 1996; 183: 87–97.

    Article  CAS  PubMed  Google Scholar 

  28. Doherty DG, O'Farrelly C . Innate and adaptive lymphoid cells in human liver. Immunol Rev 2000; 174: 5–20.

    Article  CAS  PubMed  Google Scholar 

  29. Mehal WZ, Azzaroli F, Crispe IN . Immunology of the healthy liver: Old questions and new insights. Gatsroenterology 2001; 120: 250–260.

    Article  CAS  Google Scholar 

  30. Ferlazzo G, Munz C . NK cell compartments and their activation by dendritic cells. J Immunol 2004; 172: 1333–1339.

    Article  CAS  PubMed  Google Scholar 

  31. Tatsumi T, Gambotto A, Robbins PD, Storkus WJ . Interleukin 18 gene transfer expands the repertoire of antitumor Th1-type immunity elicited by dendritic cell-based vaccines in association with enhanced therapeutic efficacy. Cancer Res 2002; 62: 5853–5858.

    CAS  PubMed  Google Scholar 

  32. Miyagi T, Takehara T, Tatsumi T, Kanto T, Suzuki T, Jinushi M et al. CD1d-mediated stimulation of natural killer T cells selectively activates hepatic natural killer cells to eliminate experimentally disseminated hepatoma cells in murine liver. Int J Cancer 2003; 106: 81–89.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grant from 21st Century Center of Excellence program of the Ministry of Education, Culture, Sports, Science and Technology of Japan, Aid for Research on Hepatitis and BSE from the Ministry of Health, Labor and Welfare of Japan (N Hayashi) and National Institute of Health (NIH) grant 1P01 CA100327 (WJ Storkus).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Hayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tatsumi, T., Takehara, T., Yamaguchi, S. et al. Injection of IL-12 gene-transduced dendritic cells into mouse liver tumor lesions activates both innate and acquired immunity. Gene Ther 14, 863–871 (2007). https://doi.org/10.1038/sj.gt.3302941

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302941

Keywords

This article is cited by

Search

Quick links