Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Use of ultrasound to enhance nonviral lung gene transfer in vivo

Abstract

We have assessed if high-frequency ultrasound (US) can enhance nonviral gene transfer to the mouse lung. Cationic lipid GL67/pDNA, polyethylenimine (PEI)/pDNA and naked plasmid DNA (pDNA) were delivered via intranasal instillation, mixed with Optison microbubbles, and the animals were then exposed to 1 MHz US. Addition of Optison alone significantly reduced the transfection efficiency of all three gene transfer agents. US exposure did not increase GL67/pDNA or PEI/pDNA gene transfer compared to Optison-treated animals. However, it increased naked pDNA transfection efficiency by approximately 15-fold compared to Optison-treated animals, suggesting that despite ultrasound being attenuated by air in the lung, sufficient energy penetrates the tissue to increase gene transfer. US-induced lung haemorrhage, assessed histologically, increased with prolonged US exposure. The left lung was more affected than the right and this was mirrored by a lesser increase in naked pDNA gene transfer, in the left lung. The positive effect of US was dependent on Optison, as in its absence US did not increase naked pDNA transfection efficiency. We have thus established proof of principle that US can increase nonviral gene transfer, in the air-filled murine lung.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ferrari S, Geddes DM, Alton EW . Barriers to and new approaches for gene therapy and gene delivery in cystic fibrosis. Adv Drug Deliv Rev 2002; 54: 1373–1393.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Ferrari S, Kitson C, Farley R, Steel R, Marriott C, Parkins DA et al. Mucus altering agents as adjuncts for nonviral gene transfer to airway epithelium. Gene Therapy 2001; 8: 1380–1386.

    Article  CAS  PubMed  Google Scholar 

  3. Sinn PL, Shah AJ, Donovan MD, McCray Jr PB . Viscoelastic gel formulations enhance airway epithelial gene transfer with viral vectors. Am J Respir Cell Mol Biol 2005; 32: 404–410.

    Article  CAS  PubMed  Google Scholar 

  4. Wang G, Zabner J, Deering C, Launspach J, Shao J, Bodner M et al. Increasing epithelial junction permeability enhances gene transfer to airway epithelia in vivo. Am J Respir Cell Mol Biol 2000; 22: 129–138.

    Article  PubMed  Google Scholar 

  5. Caplen NJ, Alton EW, Middleton PG, Dorin JR, Stevenson BJ, Gao X et al. Liposome-mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Nat Med 1995; 1: 39–46.

    Article  CAS  PubMed  Google Scholar 

  6. Flotte TR, Zeitlin PL, Reynolds TC, Heald AE, Pedersen P, Beck S et al. Phase I trial of intranasal and endobronchial administration of a recombinant adeno-associated virus serotype 2 (rAAV2)-CFTR vector in adult cystic fibrosis patients: a two-part clinical study. Hum Gene Ther 2003; 14: 1079–1088.

    Article  CAS  PubMed  Google Scholar 

  7. Hyde SC, Southern KW, Gileadi U, Fitzjohn EM, Mofford KA, Waddell BE et al. Repeat administration of DNA/liposomes to the nasal epithelium of patients with cystic fibrosis. Gene Therapy 2000; 7: 1156–1165.

    Article  CAS  PubMed  Google Scholar 

  8. Hyde SC, Gill DR, Higgins CF, Trezise AE, MacVinish LJ, Cuthbert AW et al. Correction of the ion transport defect in cystic fibrosis transgenic mice by gene therapy. Nature 1993; 362: 250–255.

    Article  CAS  PubMed  Google Scholar 

  9. Porteous DJ, Dorin JR, McLachlan G, Vidson-Smith H, Davidson H, Stevenson BJ et al. Evidence for safety and efficacy of DOTAP cationic liposome mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Gene Therapy 1997; 4: 210–218.

    Article  CAS  PubMed  Google Scholar 

  10. Alton EW, Stern M, Farley R, Jaffe A, Chadwick SL, Phillips J et al. Cationic lipid-mediated CFTR gene transfer to the lungs and nose of patients with cystic fibrosis: a double-blind placebo-controlled trial. Lancet 1999; 353: 947–954.

    Article  CAS  PubMed  Google Scholar 

  11. Ziady AG, Kelley TJ, Milliken E, Ferkol T, Davis PB . Functional evidence of CFTR gene transfer in nasal epithelium of cystic fibrosis mice in vivo following luminal application of DNA complexes targeted to the serpin-enzyme complex receptor. Mol Ther 2002; 5: 413–419.

    Article  CAS  PubMed  Google Scholar 

  12. Konstan MW, Davis PB, Wagener JS, Hilliard KA, Stern RC, Milgram LJ et al. Compacted DNA nanoparticles administered to the nasal mucosa of cystic fibrosis subjects are safe and demonstrate partial to complete cystic fibrosis transmembrane regulator reconstitution. Hum Gene Ther 2004; 15: 1255–1269.

    Article  CAS  PubMed  Google Scholar 

  13. Miller DL, Song J . Tumor growth reduction and DNA transfer by cavitation-enhanced high-intensity focused ultrasound in vivo. Ultrasound Med Biol 2003; 29: 887–893.

    Article  PubMed  Google Scholar 

  14. Miller DL, Song J . Lithotripter shock waves with cavitation nucleation agents produce tumor growth reduction and gene transfer in vivo. Ultrasound Med Biol 2002; 28: 1343–1348.

    Article  PubMed  Google Scholar 

  15. Koch S, Pohl P, Cobet U, Rainov NG . Ultrasound enhancement of liposome-mediated cell transfection is caused by cavitation effects. Ultrasound Med Biol 2000; 26: 897–903.

    Article  CAS  PubMed  Google Scholar 

  16. Lawrie A, Brisken AF, Francis SE, Tayler DI, Chamberlain J, Crossman DC et al. Ultrasound enhances reporter gene expression after transfection of vascular cells in vitro. Circulation 1999; 99: 2617–2620.

    Article  CAS  PubMed  Google Scholar 

  17. Liang HD, Lu QL, Xue SA, Halliwell M, Kodama T, Cosgrove DO et al. Optimisation of ultrasound-mediated gene transfer (sonoporation) in skeletal muscle cells. Ultrasound Med Biol 2004; 30: 1523–1529.

    Article  PubMed  Google Scholar 

  18. Anwer K, Kao G, Proctor B, Anscombe I, Florack V, Earls R et al. Ultrasound enhancement of cationic lipid-mediated gene transfer to primary tumors following systemic administration. Gene Therapy 2000; 7: 1833–1839.

    Article  CAS  PubMed  Google Scholar 

  19. Amabile PG, Waugh JM, Lewis TN, Elkins CJ, Janas W, Dake MD . High-efficiency endovascular gene delivery via therapeutic ultrasound. J Am Coll Cardiol 2001; 37: 1975–1980.

    Article  CAS  PubMed  Google Scholar 

  20. Christiansen JP, French BA, Klibanov AL, Kaul S, Lindner JR . Targeted tissue transfection with ultrasound destruction of plasmid-bearing cationic microbubbles. Ultrasound Med Biol 2003; 29: 1759–1767.

    Article  PubMed  Google Scholar 

  21. Miao CH, Brayman AA, Loeb KR, Ye P, Zhou L, Mourad P et al. Ultrasound enhances gene delivery of human factor IX plasmid. Hum Gene Therapy 2005; 16: 893–905.

    Article  CAS  Google Scholar 

  22. Shohet RV, Chen S, Zhou YT, Wang Z, Meidell RS, Unger RH et al. Echocardiographic destruction of albumin microbubbles directs gene delivery to the myocardium. Circulation 2000; 101: 2554–2556.

    Article  CAS  PubMed  Google Scholar 

  23. Liu J, Lewis TN, Prausnitz MR . Non-invasive assessment and control of ultrasound-mediated membrane permeabilization. Pharm Res 1998; 15: 918–924.

    Article  CAS  PubMed  Google Scholar 

  24. Taniyama Y, Tachibana K, Hiraoka K, Aoki M, Yamamoto S, Matsumoto K et al. Development of safe and efficient novel nonviral gene transfer using ultrasound: enhancement of transfection efficiency of naked plasmid DNA in skeletal muscle. Gene Therapy 2002; 9: 372–380.

    Article  CAS  PubMed  Google Scholar 

  25. Podell S, Burrascano C, Gaal M, Golec B, Maniquis J, Mehlhaff P . Physical and biochemical stability of Optison, an injectable ultrasound contrast agent. Biotechnol Appl Biochem 1999; 30: 213–223.

    CAS  PubMed  Google Scholar 

  26. Li T, Tachibana K, Kuroki M, Kuroki M . Gene transfer with echo-enhanced contrast agents: comparison between Albunex, Optison, and Levovist in mice – initial results. Radiology 2003; 229: 423–428.

    Article  PubMed  Google Scholar 

  27. Duvshani-Eshet M, Baruch L, Kesselman E, Shimoni E, Machluf M . Therapeutic ultrasound-mediated DNA to cell and nucleus: bioeffects revealed by confocal and atomic force microscopy. Gene Therapy 2006; 13: 163–172.

    Article  CAS  PubMed  Google Scholar 

  28. Martin K, Ramnarine KV . Frequency, speed and wavelength. In: Hoskins PR, Thrush A, Martin K, Whittingham TA (eds). Diagnostic Ultrasound: Physics and Equipment. London: Greenwich Medical Media, 2002, pp 7–22.

    Google Scholar 

  29. Emerson M, Renwick L, Tate S, Rhind S, Milne E, Painter HA et al. Transfection efficiency and toxicity following delivery of naked plasmid DNA and cationic lipid-DNA complexes to ovine lung segments. Mol Therapy 2003; 8: 646–653.

    Article  CAS  Google Scholar 

  30. Rudolph C, Ortiz A, Schillinger U, Jauernig J, Plank C, Rosenecker J . Methodological optimization of polyethylenimine (PEI)-based gene delivery to the lungs of mice via aerosol application. J Gene Med 2005; 7: 59–66.

    Article  CAS  PubMed  Google Scholar 

  31. Gill DR, Smyth SE, Goddard CA, Pringle IA, Higgins CF, Colledge WH et al. Increased persistence of lung gene expression using plasmids containing the ubiquitin C or elongation factor 1alpha promoter. Gene Therapy 2001; 8: 1539–1546.

    Article  CAS  PubMed  Google Scholar 

  32. Lu QL, Liang HD, Partridge T, Blomley MJ . Microbubble ultrasound improves the efficiency of gene transduction in skeletal muscle in vivo with reduced tissue damage. Gene Therapy 2003; 10: 396–405.

    Article  CAS  PubMed  Google Scholar 

  33. Mehier-Humbert S, Bettinger T, Yan F, Guy RH . Ultrasound-mediated gene delivery: kinetics of plasmid internalization and gene expression. J Control Release 2005; 104: 203–211.

    Article  CAS  PubMed  Google Scholar 

  34. Mehier-Humbert S, Bettinger T, Yan F, Guy RH . Plasma membrane poration induced by ultrasound exposure: implication for drug delivery. J Control Release 2005; 104: 213–222.

    Article  CAS  PubMed  Google Scholar 

  35. Rudolph C, Muller RH, Rosenecker J . Jet nebulization of PEI/DNA polyplexes: physical stability and in vitro gene delivery efficiency. J Gene Med 2002; 4: 66–74.

    Article  CAS  PubMed  Google Scholar 

  36. Carstensen EL, Gracewski S, Dalecki D . The search for cavitation in vivo. Ultrasound Med Biol 2000; 26: 1377–1385.

    Article  CAS  PubMed  Google Scholar 

  37. American Institute of Ultrasound in Medicine. Section 4 – Bioeffects in tissues with gas bodies. J Ultrasound Med 2000; 19: 97–108.

    Article  Google Scholar 

  38. Dalecki D, Child SZ, Raeman CH, Cox C, Penney DP, Carstensen EL . Age dependence of ultrasonically induced lung hemorrhage in mice. Ultrasound Med Biol 1997; 23: 767–776.

    Article  CAS  PubMed  Google Scholar 

  39. American Institute of Ultrasound in Medicine. Section 3 – Selected biological properties of tissues: potential determinants of susceptibility to ultrasound-induced bioeffects. J Ultrasound Med 2000; 19: 85–96.

    Article  Google Scholar 

  40. Gautam A, Densmore CL, Xu B, Waldrep JC . Enhanced gene expression in mouse lung after PEI-DNA aerosol delivery. Mol Therapy 2000; 2: 63–70.

    Article  CAS  Google Scholar 

  41. Hillery E, Cheng S, Geddes D, Alton E . Effects of altering dosing on cationic liposome-mediated gene transfer to the respiratory epithelium. Gene Therapy 1999; 6: 1313–1316.

    Article  CAS  PubMed  Google Scholar 

  42. Wiseman JW, Goddard CA, McLelland D, Colledge WH . A comparison of linear and branched polyethylenimine (PEI) with DCChol/DOPE liposomes for gene delivery to epithelial cells in vitro and in vivo. Gene Therapy 2003; 10: 1654–1662.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by UK Cystic Fibrosis Trust, through a grant to the UK Cystic Fibrosis Gene Therapy Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U Griesenbach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xenariou, S., Griesenbach, U., Liang, HD. et al. Use of ultrasound to enhance nonviral lung gene transfer in vivo. Gene Ther 14, 768–774 (2007). https://doi.org/10.1038/sj.gt.3302922

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302922

Keywords

This article is cited by

Search

Quick links