Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Bifunctional compounds for targeted hepatic gene delivery

Abstract

A series of bifunctional compounds with galactosyl residues as targeting ligand for asialoglycoprotein receptors on hepatocytes and various dendrimers as the DNA-binding domain was synthesized. When mixed with plasmid DNA, these compounds self assembled into particles that exhibited high transfection activity both in vitro and in vivo. Optimal activity in liver cells was observed with compounds containing three galactosyl residues and 16 dendrimer arms. These results suggest that domain-based design is an effective strategy for development of a new generation of synthetic gene carriers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Hart SL . Lipid carriers for gene therapy. Curr Drug Deliv 2005; 2: 423–428.

    Article  CAS  Google Scholar 

  2. Ewert K, Ahmad A, Evans HM, Safinya CR . Cationic lipid-DNA complexes for non viral gene therapy: relating supramolecular structures to cellular pathways. Expert Opin Biol Ther 2005; 5: 33–53.

    Article  CAS  Google Scholar 

  3. Liu D, Ren T, Gao X . Cationic transfection lipids. Curr Med Chem 2003; 10: 1307–1313.

    Article  CAS  Google Scholar 

  4. Demeneix B, Behr JP . Polyethylenimine (PEI). Adv Genet 2005; 53: 217–230.

    CAS  PubMed  Google Scholar 

  5. Zhong Z, Feijen J, Lok MC, Hennink WE, Christensen LV, Yockman JW et al. Low molecular weight linear polyethylenimine-b-poly(ethylene glycol)-b-polyethylenimine triblock copolymers: synthesis, characterization, and in vitro gene transfer properties. Biomacromolecules 2005; 6: 3440–3448.

    Article  CAS  Google Scholar 

  6. Kim EM, Jeong HJ, Park IK, Cho CS, Moon HB, Yu DY et al. Asialoglycoprotein receptor targeted gene delivery using galactosylated polyethylenimine-graft-poly(ethylene glycol): in vitro and in vivo studies. J Control Release 2005; 108: 557–567.

    Article  CAS  Google Scholar 

  7. Zanta MA, Boussif O, Adib A Behr JP . In vitro gene delivery to hepatocytes with galactosylated polyethylenimine. Bioconjug Chem 1997; 8: 839–844.

    Article  CAS  Google Scholar 

  8. Brissault B, Kichler A, Guis C, Leborgne C, Danos O, Cheradame H . Synthesis of linear polyethylenimine derivatives for DNA transfection. Bioconjug Chem 2003; 14: 581–587.

    Article  CAS  Google Scholar 

  9. Forrest ML, Meister GE, Koerber JT, Pack DW . Partial acetylation of polyethylenimine enhances in vitro gene delivery. Pharm Res 2004; 21: 365–371.

    Article  CAS  Google Scholar 

  10. Ziady AG, Gedeon CR, Miller T, Quan W, Payne JM, Hyatt SL et al. Transfection of airway epithelium by stable PEGylated poly-L-lysine DNA nanoparticles in vivo. Mol Ther 2003; 8: 936–947.

    Article  CAS  Google Scholar 

  11. Erbacher P, Roche AC, Monsigny M, Midoux P . Glycosylated polylysine/DNA complexes: gene transfer efficiency in relation with the size and the sugar substitution level of glycosylated polylysines and with the plasmid size. Bioconjug Chem 1995; 6: 401–410.

    Article  CAS  Google Scholar 

  12. Lee CC, MacKay JA, Frechet JM, Szoka FC . Designing dendrimers for biological applications. Nat Biotechnol 2005; 23: 1517–1526.

    Article  CAS  Google Scholar 

  13. Dufès C, Uchegbu IF, Schätzlein AG . Dendrimers in gene delivery. Adv Drug Deliv Rev 2005; 57: 2177–2202.

    Article  Google Scholar 

  14. Radu DR, Lai CY, Jeftinija K, Rowe EW, Jeftinija S, Lin VS . A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. J Am Chem Soc 2004; 126: 13216–13217.

    Article  CAS  Google Scholar 

  15. Dang JM, Leong KW . Natural polymers for gene delivery and tissue engineering. Adv Drug Deliv Rev 2006; 58: 487–499.

    Article  CAS  Google Scholar 

  16. Chae SY, Son S, Lee M, Jang MK, Nah JW . Deoxycholic acid-conjugated chitosan oligosaccharide nanoparticles for efficient gene carrier. J Control Release 2005; 109: 330–344.

    Article  CAS  Google Scholar 

  17. Bozkir A, Saka OM . Chitosan nanoparticles for plasmid DNA delivery: effect of chitosan molecular structure on formulation and release characteristics. Drug Deliv 2004; 11: 107–112.

    Article  CAS  Google Scholar 

  18. Mansouri S, Lavigne P, Corsi K, Benderdour M, Beaumont E, Fernandes JC . Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: Strategies to improve transfection efficacy. Eur J Pharm Biopharm 2004; 57: 1–8.

    Article  CAS  Google Scholar 

  19. Astafieva I, Maksimova I, Lukanidin E, Alakhov V, Kabanov A . Enhancement of the polycation-mediated DNA uptake and cell transfection with Pluronic P85 block copolymer. FEBS Lett 1996; 389: 278–280.

    Article  CAS  Google Scholar 

  20. Jeon E, Kim HD, Kim JS . Pluronic-grafted poly-(L)-lysine as a new synthetic gene carrier. J Biomed Mater Res 2003; 66: 854–859.

    Article  Google Scholar 

  21. Howerton DA, Hunter RL, Ziegler HK, Check IJ . Induction of macrophage Ia expression in vivo by a synthetic block copolymer, L81. J Immunol 1990; 144: 1578–1584.

    CAS  PubMed  Google Scholar 

  22. Davis ME, Pun SH, Bellocq NC, Reineke TM, Popielarski SR, Mishra S et al. Self-assembling nucleic acid delivery vehicles via linear, water-soluble, cyclodextrin-containing polymers. Curr Med Chem 2004; 11: 179–197.

    Article  CAS  Google Scholar 

  23. Forrest ML, Gabrielson N, Pack DW . Cyclodextrin-polyethylenimine conjugates for targeted in vitro gene delivery. Biotechnol Bioeng 2005; 89: 416–423.

    Article  CAS  Google Scholar 

  24. Ren T, Zhang G, Liu D . Synthesis of galactosyl compounds for targeted gene delivery. Bioorg Med Chem 2001; 9: 2969–2978.

    Article  CAS  Google Scholar 

  25. Lodish HF . Recognition of complex oligosaccharides by the multi-subunit asialoglycoprotein receptor. Trends Biochem Sci 1991; 16: 374–377.

    Article  CAS  Google Scholar 

  26. Liu F, Song Y, Liu D . Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther 1999; 6: 1258–1266.

    Article  CAS  Google Scholar 

  27. Zhang G, Budker V, Wolff JA . High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Hum Gene Ther 1999; 10: 1735–1737.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Joseph E Knapp for critical reading of this manuscript. This work was supported by NIH grants RO1 EB002946 to D Liu and CA76541 to DB stolz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, K., Lei, Y., Stolz, D. et al. Bifunctional compounds for targeted hepatic gene delivery. Gene Ther 14, 704–708 (2007). https://doi.org/10.1038/sj.gt.3302917

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302917

Keywords

This article is cited by

Search

Quick links