Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cotransduction of CCL27 gene can improve the efficacy and safety of IL-12 gene therapy for cancer

Abstract

Interleukin-12 (IL-12) is a potent antitumoral cytokine, but high doses are toxic. Herein, we demonstrate that combinational transduction of IL-12 and CC-chemokine ligand-27 (CCL27) genes into pre-existing murine OV-HM ovarian carcinoma and Meth-A fibrosarcoma, by using RGD fiber-mutant adenoviral vectors, could induce tumor regression and relieve systemic side effects more effectively than either treatment alone. The antitumor activity of the IL-12 and CCL27 combination treatment was T-cell-dependent, and development of long-term specific immunity was confirmed in rechallenge experiments. Immunohistochemical analysis of tumors transduced with CCL27 gene alone or cotransduced with IL-12 and CCL27 genes showed significant increases in numbers of infiltrating CD3+ T cells, which included both CD4+ and CD8+ cells. Additionally, cotransduction with IL-12 and CCL27 genes could more efficiently activate tumor-infiltrating immune cells than transduction with CCL27 alone, as determined by the frequency of perforin-positive cells and expression levels of IFN-γ. Furthermore, mice treated with the IL-12 and CCL27 combination compared with those treated with IL-12 alone showed milder pathological changes, for example, lymphocyte infiltration and extramedullary hematopoiesis, in lung, liver and spleen. Our data provide evidence that combinational in vivo transduction with IL-12 and CCL27 genes is a promising approach for the development of cancer immunogene therapy that can simultaneously recruit and activate tumor-infiltrating immune cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 4
Figure 3
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

AdRGD:

RGD fiber-mutant adenoviral vector

CCL:

CC-chemokine ligand

CTL:

cytotoxic T lymphocyte

DC:

dendritic cell

FBS:

fetal bovine serum

HE:

hematoxylin and eosin

IFN:

interferon

IL:

interleukin

mAb:

monoclonal antibody

NK:

natural killer

PBS:

phosphate-buffered saline

PFU:

plaque-forming unit

RT-PCR:

reverse transcription-polymerase chain reaction

STAT:

signal transducer and activator of transcription

TAA:

tumor-associated antigen

Th:

helper T

References

  1. Gubler U, Chua AO, Schoenhaut DS, Dwyer CM, McComas W, Motyka R et al. Coexpression of two distinct genes is required to generate secreted bioactive cytotoxic lymphocyte maturation factor. Proc Natl Acad Sci USA 1991; 88: 4143–4147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wolf SF, Temple PA, Kobayashi M, Young D, Dicig M, Lowe L et al. Cloning of cDNA for natural killer cell stimulatory factor, a heterodimeric cytokine with multiple biologic effects on T and natural killer cells. J Immunol 1991; 146: 3074–3081.

    CAS  PubMed  Google Scholar 

  3. Robertson MJ, Soiffer RJ, Wolf SF, Manley TJ, Donahue C, Young D et al. Response of human natural killer (NK) cells to NK cell stimulatory factor (NKSF): cytolytic activity and proliferation of NK cells are differentially regulated by NKSF. J Exp Med 1992; 175: 779–788.

    Article  CAS  PubMed  Google Scholar 

  4. Brunda MJ . Interleukin-12. J Leukoc Biol 1994; 55: 280–288.

    Article  CAS  PubMed  Google Scholar 

  5. Chan SH, Perussia B, Gupta JW, Kobayashi M, Pospisil M, Young HA et al. Induction of interferon-γ production by natural killer cell stimulatory factor: characterization of the responder cells and synergy with other inducers. J Exp Med 1991; 173: 869–879.

    Article  CAS  PubMed  Google Scholar 

  6. Chan SH, Kobayashi M, Santoli D, Perussia B, Trinchieri G . Mechanisms of IFN-γ induction by natural killer cell stimulatory factor (NKSF/IL-12). Role of transcription and mRNA stability in the synergistic interaction between NKSF and IL-2. J Immunol 1992; 148: 92–98.

    CAS  PubMed  Google Scholar 

  7. Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O'Garra A, Murphy KM . Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 1993; 260: 547–549.

    Article  CAS  PubMed  Google Scholar 

  8. Seder RA, Gazzinelli R, Sher A, Paul WE . Interleukin 12 acts directly on CD4+ T cells to enhance priming for interferon γ production and diminishes interleukin 4 inhibition of such priming. Proc Natl Acad Sci USA 1993; 90: 10188–10192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nastala CL, Edington HD, McKinney TG, Tahara H, Nalesnik MA, Brunda MJ et al. Recombinant IL-12 administration induces tumor regression in association with IFN-γ production. J Immunol 1994; 153: 1697–1706.

    CAS  PubMed  Google Scholar 

  10. Voest EE, Kenyon BM, O'Reilly MS, Truitt G, D'Amato RJ, Folkman J . Inhibition of angiogenesis in vivo by interleukin 12. J Natl Cancer Inst 1995; 87: 581–586.

    Article  CAS  PubMed  Google Scholar 

  11. Leonard JP, Sherman ML, Fisher GL, Buchanan LJ, Larsen G, Atkins MB et al. Effects of single-dose interleukin-12 exposure on interleukin-12-associated toxicity and interferon-γ production. Blood 1997; 90: 2541–2548.

    CAS  PubMed  Google Scholar 

  12. Atkins MB, Robertson MJ, Gordon M, Lotze MT, DeCoste M, DuBois JS et al. Phase I evaluation of intravenous recombinant human interleukin 12 in patients with advanced malignancies. Clin Cancer Res 1997; 3: 409–417.

    CAS  PubMed  Google Scholar 

  13. Okada Y, Okada N, Mizuguchi H, Takahashi K, Hayakawa T, Mayumi T et al. Optimization of antitumor efficacy and safety of in vivo cytokine gene therapy using RGD fiber-mutant adenovirus vector for preexisting murine melanoma. Biochim Biophys Acta 2004; 1670: 172–180.

    Article  CAS  PubMed  Google Scholar 

  14. Ogawa M, Umehara K, Yu WG, Uekusa Y, Nakajima C, Tsujimura T et al. A critical role for a peritumoral stromal reaction in the induction of T-cell migration responsible for interleukin-12-induced tumor regression. Cancer Res 1999; 59: 1531–1538.

    CAS  PubMed  Google Scholar 

  15. Iwasaki M, Yu WG, Uekusa Y, Nakajima C, Yang YF, Gao P et al. Differential IL-12 responsiveness of T cells but not of NK cells from tumor-bearing mice in IL-12-responsive versus -unresponsive tumor models. Int Immunol 2000; 12: 701–709.

    Article  CAS  PubMed  Google Scholar 

  16. Sharma S, Stolina M, Luo J, Strieter RM, Burdick M, Zhu LX et al. Secondary lymphoid tissue chemokine mediates T cell-dependent antitumor responses in vivo. J Immunol 2000; 164: 4558–4563.

    Article  CAS  PubMed  Google Scholar 

  17. Fushimi T, Kojima A, Moore MA, Crystal RG . Macrophage inflammatory protein 3α transgene attracts dendritic cells to established murine tumors and suppresses tumor growth. J Clin Invest 2000; 105: 1383–1393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Braun SE, Chen K, Foster RG, Kim CH, Hromas R, Kaplan MH et al. The CC chemokine CKβ-11/MIP-3β/ELC/Exodus 3 mediates tumor rejection of murine breast cancer cells through NK cells. J Immunol 2000; 164: 4025–4031.

    Article  CAS  PubMed  Google Scholar 

  19. Miyata T, Yamamoto S, Sakamoto K, Morishita R, Kaneda Y . Novel immunotherapy for peritoneal dissemination of murine colon cancer with macrophage inflammatory protein-1β mediated by a tumor-specific vector, HVJ cationic liposomes. Cancer Gene Ther 2001; 8: 852–860.

    Article  CAS  PubMed  Google Scholar 

  20. Guo J, Zhang M, Wang B, Yuan Z, Guo Z, Chen T et al. Fractalkine transgene induces T-cell-dependent antitumor immunity through chemoattraction and activation of dendritic cells. Int J Cancer 2003; 103: 212–220.

    Article  CAS  PubMed  Google Scholar 

  21. Gao J-Q, Tsuda Y, Katayama K, Nakayama T, Hatanaka Y, Tani Y et al. Antitumor effect by interleukin-11 receptor α-locus chemokine/CCL27, introduced into tumor cells through a recombinant adenovirus vector. Cancer Res 2003; 63: 4420–4425.

    CAS  PubMed  Google Scholar 

  22. Okada N, Gao J-Q, Sasaki A, Niwa M, Okada Y, Nakayama T et al. Anti-tumor activity of chemokine is affected by both kinds of tumors and the activation state of the host's immune system: implications for chemokine-based cancer immunotherapy. Biochem Biophys Res Commun 2004; 317: 68–76.

    Article  CAS  PubMed  Google Scholar 

  23. Okada N, Sasaki A, Niwa M, Okada Y, Hatanaka Y, Tani Y et al. Tumor suppressive efficacy through augmentation of tumor-infiltrating immune cells by intratumoral injection of chemokine-expressing adenoviral vector. Cancer Gene Ther 2006; 13: 393–405.

    Article  CAS  PubMed  Google Scholar 

  24. Yoshie O, Imai T, Nomiyama H . Chemokines in immunity. Adv Immunol 2001; 78: 57–110.

    Article  CAS  PubMed  Google Scholar 

  25. Zlotnik A, Yoshie O . Chemokines: a new classification system and their role in immunity. Immunity 2000; 12: 121–127.

    Article  CAS  PubMed  Google Scholar 

  26. Mandelboim O, Vadai E, Fridkin M, Katz-Hillel A, Feldman M, Berke G et al. Regression of established murine carcinoma metastases following vaccination with tumour-associated antigen peptides. Nat Med 1995; 1: 1179–1183.

    Article  CAS  PubMed  Google Scholar 

  27. Conry RM, Curiel DT, Strong TV, Moore SE, Allen KO, Barlow DL et al. Safety and immunogenicity of a DNA vaccine encoding carcinoembryonic antigen and hepatitis B surface antigen in colorectal carcinoma patients. Clin Cancer Res 2002; 8: 2782–2787.

    CAS  PubMed  Google Scholar 

  28. Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K et al. Vaccination with irradiated tumor cells engineered to secrete granulocyte–macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA 1993; 90: 3539–3543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Asada H, Kishida T, Hirai H, Satoh E, Ohashi S, Takeuchi M et al. Significant antitumor effects obtained by autologous tumor cell vaccine engineered to secrete interleukin (IL)-12 and IL-18 by means of the EBV/lipoplex. Mol Ther 2002; 5: 609–616.

    Article  CAS  PubMed  Google Scholar 

  30. Mayordomo JI, Zorina T, Storkus WJ, Zitvogel L, Celluzzi C, Falo LD et al. Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity. Nat Med 1995; 1: 1297–1302.

    Article  CAS  PubMed  Google Scholar 

  31. Song W, Kong HL, Carpenter H, Torii H, Granstein R, Rafii S et al. Dendritic cells genetically modified with an adenovirus vector encoding the cDNA for a model antigen induce protective and therapeutic antitumor immunity. J Exp Med 1997; 186: 1247–1256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nair SK, Heiser A, Boczkowski D, Majumdar A, Naoe M, Lebkowski JS et al. Induction of cytotoxic T cell responses and tumor immunity against unrelated tumors using telomerase reverse transcriptase RNA transfected dendritic cells. Nat Med 2000; 6: 1011–1017.

    Article  CAS  PubMed  Google Scholar 

  33. Dilloo D, Bacon K, Holden W, Zhong W, Burdach S, Zlotnik A et al. Combined chemokine and cytokine gene transfer enhances antitumor immunity. Nat Med 1996; 2: 1090–1095.

    Article  CAS  PubMed  Google Scholar 

  34. Emtage PC, Wan Y, Hitt M, Graham FL, Muller WJ, Zlotnik A et al. Adenoviral vectors expressing lymphotactin and interleukin 2 or lymphotactin and interleukin 12 synergize to facilitate tumor regression in murine breast cancer models. Hum Gene Ther 1999; 10: 697–709.

    Article  CAS  PubMed  Google Scholar 

  35. Lund RJ, Chen Z, Scheinin J, Lahesmaa R . Early target genes of IL-12 and STAT4 signaling in Th cells. J Immunol 2004; 172: 6775–6782.

    Article  CAS  PubMed  Google Scholar 

  36. Mosmann TR, Sad S . The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today 1996; 17: 138–146.

    Article  CAS  PubMed  Google Scholar 

  37. Jackson JD, Yan Y, Brunda MJ, Kelsey LS, Talmadge JE . Interleukin-12 enhances peripheral hematopoiesis in vivo. Blood 1995; 85: 2371–2376.

    CAS  PubMed  Google Scholar 

  38. Tare NS, Bowen S, Warrier RR, Carvajal DM, Benjamin WR, Riley JH et al. Administration of recombinant interleukin-12 to mice suppresses hematopoiesis in the bone marrow but enhances hematopoiesis in the spleen. J Interferon Cytokine Res 1995; 15: 377–383.

    Article  CAS  PubMed  Google Scholar 

  39. Koizumi N, Mizuguchi H, Sakurai F, Yamaguchi T, Watanabe Y, Hayakawa T . Reduction of natural adenovirus tropism to mouse liver by fiber-shaft exchange in combination with both CAR- and αv integrin-binding ablation. J Virol 2003; 77: 13062–13072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Eto Y, Gao J-Q, Sekiguchi F, Kurachi S, Katayama K, Maeda M et al. PEGylated adenovirus vectors containing RGD peptides on the tip of PEG show high transduction efficiency and antibody evasion ability. J Gene Med 2005; 7: 604–612.

    Article  CAS  PubMed  Google Scholar 

  41. Okada Y, Okada N, Mizuguchi H, Hayakawa T, Nakagawa S, Mayumi T . Transcriptional targeting of RGD fiber-mutant adenovirus vectors can improve the safety of suicide gene therapy for murine melanoma. Cancer Gene Ther 2005; 12: 608–616.

    Article  CAS  PubMed  Google Scholar 

  42. Mizuguchi H, Koizumi N, Hosono T, Utoguchi N, Watanabe Y, Kay MA et al. A simplified system for constructing recombinant adenoviral vectors containing heterologous peptides in the HI loop of their fiber knob. Gene Therapy 2001; 8: 730–735.

    Article  CAS  PubMed  Google Scholar 

  43. Mizuguchi H, Kay MA . Efficient construction of a recombinant adenovirus vector by an improved in vitro ligation method. Hum Gene Ther 1998; 9: 2577–2583.

    Article  CAS  PubMed  Google Scholar 

  44. Mizuguchi H, Kay MA . A simple method for constructing E1- and E1/E4-deleted recombinant adenoviral vectors. Hum Gene Ther 1999; 10: 2013–2017.

    Article  CAS  PubMed  Google Scholar 

  45. Dialynas DP, Quan ZS, Wall KA, Pierres A, Quintans J, Loken MR et al. Characterization of the murine T cell surface molecule, designated L3T4, identified by monoclonal antibody GK1.5: similarity of L3T4 to the human Leu-3/T4 molecule. J Immunol 1983; 131: 2445–2451.

    CAS  PubMed  Google Scholar 

  46. Ledbetter JA, Herzenberg LA . Xenogeneic monoclonal antibodies to mouse lymphoid differentiation antigens. Immunol Rev 1979; 47: 63–90.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Professor Osamu Yoshie and Dr Takashi Nakayama (Department of Microbiology, Kinki University School of Medicine, Osaka-Sayama, Japan) for providing a plasmid-containing murine CCL27 cDNA, to Professor Hiroshi Yamamoto (Department of Immunology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan) for providing murine IL-12 cDNA-containing plasmid, GK1.5 ascites and 53–6.72 ascites, to Dr Hiromi Fujiwara for providing OV-HM and Meth-A cells, to Professor Nicholas P Restifo (National Cancer Institute, Bethesda, MD, USA) for providing CT26 cells and to Mr Alexandre Learth Soares and Mr Feng Qiu (Department of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan) for their technical assistance. The present study was supported in part by grants from the Ministry of Health, Labour and Welfare of Japan, by a Grant-in-Aid for Scientific Research on Priority Areas (17016043) and Young Scientists (A) (18689007) from the Ministry of Education, Culture, Sports, Science and Technology of Japan and by grant from the Takeda Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N Okada or S Nakagawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, JQ., Kanagawa, N., Motomura, Y. et al. Cotransduction of CCL27 gene can improve the efficacy and safety of IL-12 gene therapy for cancer. Gene Ther 14, 491–502 (2007). https://doi.org/10.1038/sj.gt.3302892

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302892

Keywords

This article is cited by

Search

Quick links