Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Highly efficient and specific modulation of cardiac calcium homeostasis by adenovector-derived short hairpin RNA targeting phospholamban

Abstract

Impaired function of the phospholamban (PLB)-regulated sarcoplasmic reticulum Ca2+ pump (SERCA2a) contributes to cardiac dysfunction in heart failure (HF). PLB downregulation may increase SERCA2a activity and improve cardiac function. Small interfering (si)RNAs mediate efficient gene silencing by RNA interference (RNAi). However, their use for in vivo gene therapy is limited by siRNA instability in plasma and tissues, and by low siRNA transfer rates into target cells. To address these problems, we developed an adenoviral vector (AdV) transcribing short hairpin (sh)RNAs against rat PLB and evaluated its potential to silence the PLB gene and to modulate SERCA2a-mediated Ca2+ sequestration in primary neonatal rat cardiomyocytes (PNCMs). Over a period of 13 days, vector transduction resulted in stable >99.9% ablation of PLB-mRNA at a multiplicity of infection of 100. PLB protein gradually decreased until day 7 (7±2% left), whereas SERCA, Na+/Ca2+ exchanger (NCX1), calsequestrin and troponin I protein remained unchanged. PLB silencing was associated with a marked increase in ATP-dependent oxalate-supported Ca2+ uptake at 0.34 μ M of free Ca2+, and rapid loss of responsiveness to protein kinase A-dependent stimulation of Ca2+ uptake was maintained until day 7. In summary, these results indicate that AdV-derived PLB-shRNA mediates highly efficient, specific and stable PLB gene silencing and modulation of active Ca2+ sequestration in PNCMs. The availability of the new vector now enables employment of RNAi for the treatment of HF in vivo.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Abbreviations

AdV:

adenovector

AdV:

adenoviral vector

PLB:

phospholamban

PNCM:

primary neonatal rat cardiomyocytes

RNAi:

RNA interference

SERCA2a:

sarcoplasmic reticulum Ca2+ pump

shRNA:

short hairpin RNA

siRNA:

small interfering RNA

References

  1. Piacentino III V, Weber CR, Chen X, Weisser-Thomas J, Margulies KB, Bers DM et al. Cellular basis of abnormal calcium transients of failing human ventricular myocytes. Circ Res 2003; 92: 651–658.

    Article  CAS  Google Scholar 

  2. Wolska BM, Arteaga GM, Pena JR, Nowak G, Phillips RM, Sahai S et al. Expression of slow skeletal troponin I in hearts of phospholamban knockout mice alters the relaxant effect of beta-adrenergic stimulation. Circ Res 2002; 90: 882–888.

    Article  CAS  Google Scholar 

  3. Schmidt U, Hajjar RJ, Kim CS, Lebeche D, Doye AA, Gwathmey JK . Human heart failure: cAMP stimulation of SR Ca2+-ATPase activity and phosphorylation level of phospholamban. Am J Physiol 1999; 277: H474–H480.

    CAS  PubMed  Google Scholar 

  4. Luo W, Grupp IL, Harrer J, Ponniah S, Grupp G, Duffy JJ et al. Targeted ablation of the phospholamban gene is associated with markedly enhanced myocardial contractility and loss of beta-agonist stimulation. Circ Res 1994; 75: 401–409.

    Article  CAS  Google Scholar 

  5. Iwanaga Y, Hoshijima M, Gu Y, Iwatate M, Dieterle T, Ikeda Y et al. Chronic phospholamban inhibition prevents progressive cardiac dysfunction and pathological remodeling after infarction in rats. J Clin Invest 2004; 113: 727–736.

    Article  CAS  Google Scholar 

  6. Hoshijima M, Ikeda Y, Iwanaga Y, Minamisawa S, Date MO, Gu Y et al. Chronic suppression of heart-failure progression by a pseudophosphorylated mutant of phospholamban via in vivo cardiac rAAV gene delivery. Nat Med 2002; 8: 864–871.

    Article  CAS  Google Scholar 

  7. Eizema K, Fechner H, Bezstarosti K, Schneider-Rasp S, van der Laarse A, Wang H et al. Adenovirus-based phospholamban antisense expression as a novel approach to improve cardiac contractile dysfunction: comparison of a constitutive viral versus an endothelin-1-responsive cardiac promoter. Circulation 2000; 101: 2193–2199.

    Article  CAS  Google Scholar 

  8. Li J, Hu SJ, Sun J, Zhu ZH, Zheng X, Wang GZ et al. Construction of phospholamban antisense RNA recombinant adeno-associated virus vector and its effects in rat cardiomyocytes. Acta Pharmacol Sin 2005; 26: 51–55.

    Article  Google Scholar 

  9. He H, Meyer M, Martin JL, McDonough PM, Ho P, Lou X et al. Effects of mutant and antisense RNA of phospholamban on SR Ca2+-ATPase activity and cardiac myocyte contractility. Circulation 1999; 100: 974–980.

    Article  CAS  Google Scholar 

  10. del Monte F, Harding SE, Dec GW, Gwathmey JK, Hajjar RJ . Targeting phospholamban by gene transfer in human heart failure. Circulation 2002; 105: 904–907.

    Article  CAS  Google Scholar 

  11. Dieterle T, Meyer M, Gu Y, Belke DD, Swanson E, Iwatate M et al. Gene transfer of a phospholamban-targeted antibody improves calcium handling and cardiac function in heart failure. Cardiovasc Res 2005; 67: 678–688.

    Article  CAS  Google Scholar 

  12. Meyer M, Belke DD, Trost SU, Swanson E, Dieterle T, Scott B et al. A recombinant antibody increases cardiac contractility by mimicking phospholamban phosphorylation. FASEB J 2004; 18: 1312–1314.

    Article  CAS  Google Scholar 

  13. Watanabe A, Arai M, Yamazaki M, Koitabashi N, Wuytack F, Kurabayashi M . Phospholamban ablation by RNA interference increases Ca2+ uptake into rat cardiac myocyte sarcoplasmic reticulum. J Mol Cell Cardiol 2004; 37: 691–698.

    Article  CAS  Google Scholar 

  14. Leung RK, Whittaker PA . RNA interference: from gene silencing to gene-specific therapeutics. Pharmacol Ther 2005; 107: 222–239.

    Article  CAS  Google Scholar 

  15. Ogorelkova M, Zwaagstra J, Elahi SM, Dias C, Guilbaut C, Lo R et al. Adenovirus-delivered antisense RNA and shRNA exhibit different silencing efficiencies for the endogenous transforming growth factor-beta (TGF-beta) type II receptor. Oligonucleotides 2006; 16: 2–14.

    Article  CAS  Google Scholar 

  16. Lewis DL, Hagstrom JE, Loomis AG, Wolff JA, Herweijer H . Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. Nat Genet 2002; 32: 107–108.

    Article  CAS  Google Scholar 

  17. Odermatt A, Kurzydlowski K, MacLennan DH . The vmax of the Ca2+-ATPase of cardiac sarcoplasmic reticulum (SERCA2a) is not altered by Ca2+/calmodulin-dependent phosphorylation or by interaction with phospholamban. J Biol Chem 1996; 271: 14206–14213.

    Article  CAS  Google Scholar 

  18. Hajjar RJ, Schmidt U, Matsui T, Guerrero JL, Lee KH, Gwathmey JK et al. Modulation of ventricular function through gene transfer in vivo. Proc Natl Acad Sci USA 1998; 95: 5251–5256.

    Article  CAS  Google Scholar 

  19. del Monte F, Williams E, Lebeche D, Schmidt U, Rosenzweig A, Gwathmey JK et al. Improvement in survival and cardiac metabolism after gene transfer of sarcoplasmic reticulum Ca2+-ATPase in a rat model of heart failure. Circulation 2001; 104: 1424–1429.

    Article  CAS  Google Scholar 

  20. Vetter R, Rehfeld U, Reissfelder C, Weiss W, Wagner KD, Gunther J et al. Transgenic overexpression of the sarcoplasmic reticulum Ca2+ATPase improves reticular Ca2+ handling in normal and diabetic rat hearts. FASEB J 2002; 16: 1657–1659.

    Article  CAS  Google Scholar 

  21. Miyamoto MI, del Monte F, Schmidt U, DiSalvo TS, Kang ZB, Matsui T et al. Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure. Proc Natl Acad Sci USA 2000; 97: 793–798.

    Article  CAS  Google Scholar 

  22. Wang Z, Zhu T, Qiao C, Zhou L, Wang B, Zhang J et al. Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nat Biotechnol 2005; 23: 321–328.

    Article  CAS  Google Scholar 

  23. Muller OJ, Leuchs B, Pleger ST, Grimm D, Franz WM, Katus HA et al. Improved cardiac gene transfer by transcriptional and transductional targeting of adeno-associated viral vectors. Cardiovasc Res 2006; 70: 70–78.

    Article  Google Scholar 

  24. Gregorevic P, Blankinship MJ, Allen JM, Crawford RW, Meuse L, Miller DG et al. Systemic delivery of genes to striated muscles using adeno-associated viral vectors. Nat Med 2004; 10: 828–834.

    Article  CAS  Google Scholar 

  25. Kawamoto S, Shi Q, Nitta Y, Miyazaki J, Allen MD . Widespread and early myocardial gene expression by adeno-associated virus vector type 6 with a beta-actin hybrid promoter. Mol Ther 2005; 11: 980–985.

    Article  CAS  Google Scholar 

  26. Inagaki K, Fuess S, Storm TA, Gibson GA, McTiernan CF, Kay MA et al. Robust systemic transduction with AAV9 vectors in mice: efficient global cardiac gene transfer superior to that of AAV8. Mol Ther 2006; 14: 45–53.

    Article  CAS  Google Scholar 

  27. Wang Z, Zhu T, Qiao C, Zhou L, Wang B, Zhang J et al. Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nat Biotechnol 2005; 23: 321–328.

    Article  CAS  Google Scholar 

  28. Schmitt JP, Kamisago M, Asahi M, Li GH, Ahmad F, Mende U et al. Dilated cardiomyopathy and heart failure caused by a mutation in phospholamban. Science 2003; 299: 1410–1413.

    Article  CAS  Google Scholar 

  29. Haghighi K, Kolokathis F, Pater L, Lynch RA, Asahi M, Gramolini AO et al. Human phospholamban null results in lethal dilated cardiomyopathy revealing a critical difference between mouse and human. J Clin Invest 2003; 111: 869–876.

    Article  CAS  Google Scholar 

  30. Zhao W, Yuan Q, Qian J, Waggoner JR, Pathak A, Chu G et al. The presence of Lys27 instead of Asn27 in human phospholamban promotes sarcoplasmic reticulum Ca2+-ATPase superinhibition and cardiac remodeling. Circulation 2006; 113: 995–1004.

    Article  CAS  Google Scholar 

  31. Minamisawa S, Hoshijima M, Chu G, Ward CA, Frank K, Gu Y et al. Chronic phospholamban–sarcoplasmic reticulum calcium ATPase interaction is the critical calcium cycling defect in dilated cardiomyopathy. Cell 1999; 99: 313–322.

    Article  CAS  Google Scholar 

  32. Vetter R, Kott M, Schulze W, Rupp H . Influence of different culture conditions on sarcoplasmic reticular calcium transport in isolated neonatal rat cardiomyocytes. Mol Cell Biochem 1998; 188: 177–185.

    Article  CAS  Google Scholar 

  33. Sipo I, Wang X, Hurtado PA, Suckau L, Weger S, Poller W et al. Tamoxifen-regulated adenoviral E1A chimeras for the control of tumor selective oncolytic adenovirus replication in vitro and in vivo. Gene Therapy 2006; 13: 173–186.

    Article  CAS  Google Scholar 

  34. Marienfeld U, Haack A, Thalheimer P, Schneider-Rasp S, Brackmann HH, Poller W . ‘Autoreplication’ of the vector genome in recombinant adenoviral vectors with different E region deletions and transgenes. Gene Therapy 1999; 6: 1101–1113.

    Article  CAS  Google Scholar 

  35. Fechner H, Wang X, Wang H, Jansen A, Pauschinger M, Scherubl H et al. Trans-complementation of vector replication versus Coxsackie-adenovirus-receptor overexpression to improve transgene expression in poorly permissive cancer cells. Gene Therapy 2000; 7: 1954–1968.

    Article  CAS  Google Scholar 

  36. Fechner H, Haack A, Wang H, Wang X, Eizema K, Pauschinger M et al. Expression of Coxsackie adenovirus receptor and alphav-integrin does not correlate with adenovector targeting in vivo indicating anatomical vector barriers. Gene Therapy 1999; 6: 1520–1535.

    Article  CAS  Google Scholar 

  37. Cernohorsky J, Kolar F, Pelouch V, Korecky B, Vetter R . Thyroid control of sarcolemmal Na+/Ca2+ exchanger and SR Ca2+-ATPase in developing rat heart. Am J Physiol 1998; 275: H264–H273.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft through a research grant to WP, and through the SFB Transregio 19.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W Poller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fechner, H., Suckau, L., Kurreck, J. et al. Highly efficient and specific modulation of cardiac calcium homeostasis by adenovector-derived short hairpin RNA targeting phospholamban. Gene Ther 14, 211–218 (2007). https://doi.org/10.1038/sj.gt.3302872

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302872

Keywords

This article is cited by

Search

Quick links