Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Immunization against MUC18/MCAM, a novel antigen that drives melanoma invasion and metastasis

A Corrigendum to this article was published on 06 February 2007

Abstract

Melanoma patients with metastases have a very low survival rate and limited treatment options. Therefore, the targeting of melanoma cells when they begin to invade and metastasize would be beneficial. An adhesion molecule that is upregulated at the vertical growth phase is the melanoma cell adhesion molecule (MCAM/MUC18). MUC18 is expressed in late primary and metastatic melanoma with little or no expression on normal melanocytes. We utilized the alphavirus-based DNA plasmid, SINCp, encoding murine MUC18 (SINCp c-muMUC18) for vaccination against B16F10 murine melanoma cells expressing murine MUC18. This vaccine effectively protected mice from lethal challenges with melanoma-expressing murine MUC18 in both primary and metastatic tumor models. Vaccination against MUC18 elicited effective humoral and CD8+ T-cell immune responses against melanoma. We propose that targeting molecules important in tumor invasion may be useful in the design of future strategies for the prevention and treatment of melanoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Clark Jr WH, Elder DE, Guerry DT, Epstein MN, Greene MH, Van Horn M . A study of tumor progression: the precursor lesions of superficial spreading and nodular melanoma. Hum Pathol 1984; 15: 1147–1165.

    Article  PubMed  Google Scholar 

  2. Balch CM, Buzaid AC, Soong SJ, Atkins MB, Cascinelli N, Coit DG et al. Final version of the American Joint Committee on Cancer staging system for cutaneous melanoma. J Clin Oncol 2001; 19: 3635–3648.

    Article  CAS  PubMed  Google Scholar 

  3. McGary EC, Lev DC, Bar-Eli M . Cellular adhesion pathways and metastatic potential of human melanoma. Cancer Biol Ther 2002; 1: 459–465.

    Article  PubMed  Google Scholar 

  4. Xie S, Luca M, Huang S, Gutman M, Reich R, Johnson JP et al. Expression of MCAM/MUC18 by human melanoma cells leads to increased tumor growth and metastasis. Cancer Res 1997; 57: 2295–2303.

    CAS  PubMed  Google Scholar 

  5. Lehmann JM, Riethmuller G, Johnson JP . MUC18, a marker of tumor progression in human melanoma, shows sequence similarity to the neural cell adhesion molecules of the immunoglobulin superfamily. Proc Natl Acad Sci USA 1989; 86: 9891–9895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sers C, Kirsch K, Rothbacher U, Riethmuller G, Johnson JP . Genomic organization of the melanoma-associated glycoprotein MUC18: implications for the evolution of the immunoglobulin domains. Proc Natl Acad Sci USA 1993; 90: 8514–8518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shih IM . The role of CD146 (Mel-CAM) in biology and pathology. J Pathol 1999; 189: 4–11.

    Article  CAS  PubMed  Google Scholar 

  8. Lehmann JM, Holzmann B, Breitbart EW, Schmiegelow P, Riethmuller G, Johnson JP . Discrimination between benign and malignant cells of melanocytic lineage by two novel antigens, a glycoprotein with a molecular weight of 113 000 and a protein with a molecular weight of 76 000. Cancer Res 1987; 47: 841–845.

    CAS  PubMed  Google Scholar 

  9. McGary EC, Heimberger A, Mills L, Weber K, Thomas GW, Shtivelband M et al. A fully human antimelanoma cellular adhesion molecule/MUC18 antibody inhibits spontaneous pulmonary metastasis of osteosarcoma cells in vivo. Clin Cancer Res 2003; 9: 6560–6566.

    CAS  PubMed  Google Scholar 

  10. Mills L, Tellez C, Huang S, Baker C, McCarty M, Green L et al. Fully human antibodies to MCAM/MUC18 inhibit tumor growth and metastasis of human melanoma. Cancer Res 2002; 62: 5106–5114.

    CAS  PubMed  Google Scholar 

  11. Shedlock DJ, Weiner DB . DNA vaccination: antigen presentation and the induction of immunity. J Leukocyte Biol 2000; 68: 793–806.

    CAS  PubMed  Google Scholar 

  12. Donnelly J, Berry K, Ulmer JB . Technical and regulatory hurdles for DNA vaccines. Int J Parasitol 2003; 33: 457–467.

    Article  CAS  PubMed  Google Scholar 

  13. Hariharan MJ, Driver DA, Townsend K, Brumm D, Polo JM, Belli BA et al. DNA immunization against herpes simplex virus: enhanced efficacy using a Sindbis virus-based vector. J Virol 1998; 72: 950–958.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Leitner WW, Ying H, Driver DA, Dubensky TW, Restifo NP . Enhancement of tumor-specific immune response with plasmid DNA replicon vectors. Cancer Res 2000; 60: 51–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Leitner WW, Hwang LN, deVeer MJ, Zhou A, Silverman RH, Williams BR et al. Alphavirus-based DNA vaccine breaks immunological tolerance by activating innate antiviral pathways. Nat Med 2003; 9: 33–39.

    Article  CAS  PubMed  Google Scholar 

  16. Leitner WW, Hwang LN, Bergmann-Leitner ES, Finkelstein SE, Frank S, Restifo NP . Apoptosis is essential for the increased efficacy of alphaviral replicase-based DNA vaccines. Vaccine 2004; 22: 1537–1544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Deml L, Bojak A, Steck S, Graf M, Wild J, Schirmbeck R et al. Multiple effects of codon usage optimization on expression and immunogenicity of DNA candidate vaccines encoding the human immunodeficiency virus type 1 Gag protein. J Virol 2001; 75: 10991–11001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Narum DL, Kumar S, Rogers WO, Fuhrmann SR, Liang H, Oakley M et al. Codon optimization of gene fragments encoding plasmodium falciparum merzoite proteins enhances DNA vaccine protein expression and immunogenicity in mice. Infect Immun 2001; 69: 7250–7253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stratford R, Douce G, Zhang-Barber L, Fairweather N, Eskola J, Dougan G . Influence of codon usage on the immunogenicity of a DNA vaccine against tetanus. Vaccine 2000; 19: 810–815.

    Article  CAS  PubMed  Google Scholar 

  20. Uchijima M, Yoshida A, Nagata T, Koide Y . Optimization of codon usage of plasmid DNA vaccine is required for the effective MHC class I-restricted T cell responses against an intracellular bacterium. J Immunol 1998; 161: 5594–5599.

    CAS  PubMed  Google Scholar 

  21. Frolov I, Schlesinger S . Comparison of the effects of Sindbis virus and Sindbis virus replicons on host cell protein synthesis and cytopathogenicity in BHK cells. J Virol 1994; 68: 1721–1727.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Frolov I, Schlesinger S . Translation of Sindbis virus mRNA: effects of sequences downstream of the initiating codon. J Virol 1994; 68: 8111–8117.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Pacifico MD, Grover R, Richman PI, Daley FM, Buffa F, Wilson GD . Development of a tissue array for primary melanoma with long-term follow-up: discovering melanoma cell adhesion molecule as an important prognostic marker. Plast Reconstr Surg 2005; 115: 367–375.

    Article  CAS  PubMed  Google Scholar 

  24. Rosenberg SA . A new era for cancer immunotherapy based on the genes that encode cancer antigens. Immunity 1999; 10: 281–287.

    Article  CAS  PubMed  Google Scholar 

  25. Parmiani G, Castelli C, Rivoltini L, Casati C, Tully GA, Novellino L et al. Immunotherapy of melanoma. Semin Cancer Biol 2003; 13: 391–400.

    Article  CAS  PubMed  Google Scholar 

  26. Bellone M, Cantarella D, Castiglioni P, Crosti MC, Ronchetti A, Moro M et al. Relevance of the tumor antigen in the validation of three vaccination strategies for melanoma. J Immunol 2000; 165: 2651–2656.

    Article  CAS  PubMed  Google Scholar 

  27. Irvine KR, Rao JB, Rosenberg SA, Restifo NP . Cytokine enhancement of DNA immunization leads to effective treatment of established pulmonary metastases. J Immunol 1996; 156: 238–245.

    CAS  PubMed  Google Scholar 

  28. Ross HM, Weber LW, Wang S, Piskun G, Dyall R, Song P et al. Priming for T-cell-mediated rejection of established tumors by cutaneous DNA immunization. Clin Cancer Res 1997; 3: 2191–2196.

    CAS  PubMed  Google Scholar 

  29. Lin CT, Hung CF, Juang J, He L, Lin KY, Kim TW et al. Boosting with recombinant vaccinia increases HPV-16 E7-Specific T cell precursor frequencies and antitumor effects of HPV-16 E7-expressing Sindbis virus replicon particles. Mol Ther 2003; 8: 559–566.

    Article  CAS  PubMed  Google Scholar 

  30. Meng WS, Butterfield LH, Ribas A, Dissette VB, Heller JB, Miranda GA et al. alpha-Fetoprotein-specific tumor immunity induced by plasmid prime-adenovirus boost genetic vaccination. Cancer Res 2001; 61: 8782–8786.

    CAS  PubMed  Google Scholar 

  31. Pasquini S, Peralta S, Missiaglia E, Carta L, Lemoine NR . Prime-boost vaccines encoding an intracellular idiotype/GM-CSF fusion protein induce protective cell-mediated immunity in murine pre-B cell leukemia. Gene Therapy 2002; 9: 503–510.

    Article  CAS  PubMed  Google Scholar 

  32. Moingeon P . Cancer vaccines. Vaccine 2001; 19: 1305–1326.

    Article  CAS  PubMed  Google Scholar 

  33. Offringa R, van der Burg SH, Ossendorp F, Toes RE, Melief CJ . Design and evaluation of antigen-specific vaccination strategies against cancer. Curr Opin Immunol 2000; 12: 576–582.

    Article  CAS  PubMed  Google Scholar 

  34. Daniels GA, Sanchez-Perez L, Diaz RM, Kottke T, Thompson J, Lai M et al. A simple method to cure established tumors by inflammatory killing of normal cells. Nat Biotechnol 2004; 22: 1125–1132.

    Article  CAS  PubMed  Google Scholar 

  35. Shih IM, Nesbit M, Herlyn M, Kurman RJ . A new Mel-CAM (CD146)-specific monoclonal antibody, MN-4, on paraffin-embedded tissue. Mod Pathol 1998; 11: 1098–1106.

    CAS  PubMed  Google Scholar 

  36. Hartikka J, Bozoukova V, Jones D, Mahajan R, Wloch MK, Sawdey M et al. Sodium phosphate enhances plasmid DNA expression in vivo. Gene Therapy 2000; 7: 1171–1182.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Yong-Jun Liu for critically reading the paper and Mr Walter Pagel for scientific editing. We also thank Chiron for providing the SINCp construct. This work was supported by NIH Grants CA 76098 and p50 CA 093459 (MB-E).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Bar-Eli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leslie, M., Zhao, YJ., Lachman, L. et al. Immunization against MUC18/MCAM, a novel antigen that drives melanoma invasion and metastasis. Gene Ther 14, 316–323 (2007). https://doi.org/10.1038/sj.gt.3302864

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302864

Keywords

This article is cited by

Search

Quick links