Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Restoration of vision in RPE65-deficient Briard dogs using an AAV serotype 4 vector that specifically targets the retinal pigmented epithelium

Abstract

Previous studies have tested gene replacement therapy in RPE65-deficient dogs using recombinant adeno-associated virus 2/2 (rAAV2/2), -2/1 or -2/5 mediated delivery of the RPE65 gene. They all documented restoration of dark- and light-adapted electroretinography responses and improved psychophysical outcomes. Use of a specific RPE65 promoter and a rAAV vector that targets transgene expression specifically to the RPE may, however, provide a safer setting for the long-term therapeutic expression of RPE65. Subretinal injection of rAAV2 pseudotyped with serotype 4 (rAAV2/4) specifically targets the RPE. The purpose of our study was to evaluate a rAAV2/4 vector carrying a human RPE65cDNA driven by a human RPE65 promoter, for the ability to restore vision in RPE65−/− purebred Briard dogs and to assess the safety of gene transfer with respect to retinal morphology and function. rAAV2/4 and rAAV2/2 vectors containing similar human RPE65 promoter and cDNA cassettes were generated and administered subretinally in eight affected dogs, ages 8–30 months (n=6 with rAAV2/4, n=2 with rAAV2/2). Although fluorescein angiography and optical coherence tomography examinations displayed retinal abnormalities in treated retinas, electrophysiological analysis demonstrated that restoration of rod and cone photoreceptor function started as soon as 15 days post-injection, reaching maximal function at 3 months post-injection, and remaining stable thereafter in all animals treated at 8–11 months of age. As assessed by the ability of these animals to avoid obstacles in both dim and normal light, functional vision was restored in the treated eye, whereas the untreated contralateral eye served as an internal control. The dog treated at a later age (30 months) did not recover retinal function or vision, suggesting that there might be a therapeutic window for the successful treatment of RPE65−/− dogs by gene replacement therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Kaplan J, Bonneau D, Frezal J, Munnich A, Dufier JL . Clinical and genetic heterogeneity in retinitis pigmentosa. Hum Genet 1990; 85: 635–642.

    Article  CAS  PubMed  Google Scholar 

  2. Koenekoop RK . An overview of Leber congenital amaurosis: a model to understand human retinal development. Surv Ophthalmol 2004; 49: 379–398.

    Article  PubMed  Google Scholar 

  3. Hanein S, Perrault I, Gerber S, Tanguy G, Barbet F, Ducroq D et al. Leber congenital amaurosis: comprehensive survey of the genetic heterogeneity, refinement of the clinical definition, and genotype-phenotype correlations as a strategy for molecular diagnosis. Hum Mutat 2004; 23: 306–317.

    Article  CAS  PubMed  Google Scholar 

  4. Perrault I, Hanein S, Gerber S, Barbet F, Ducroq D, Dollfus H et al. Retinal dehydrogenase 12 (RDH12) mutations in Leber congenital amaurosis. Am J Hum Genet 2004; 75: 639–646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Auricchio A, Rolling F . Adeno-associated viral vectors for retinal gene transfer and treatment of retinal diseases. Curr Gene Ther 2005; 5: 339–348.

    Article  CAS  PubMed  Google Scholar 

  6. Choi VW, McCarty DM, Samulski RJ . AAV hybrid serotypes: improved vectors for gene delivery. Curr Gene Ther 2005; 5: 299–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gao G, Vandenberghe LH, Wilson JM . New recombinant serotypes of AAV vectors. Curr Gene Ther 2005; 5: 285–297.

    Article  CAS  PubMed  Google Scholar 

  8. Hamel CP, Tsilou E, Pfeffer BA, Hooks JJ, Detrick B, Redmond TM . Molecular cloning and expression of RPE65, a novel retinal pigment epithelium-specific microsomal protein that is post-transcriptionally regulated in vitro. J Biol Chem 1993; 268: 15751–15757.

    CAS  PubMed  Google Scholar 

  9. Bavik CO, Busch C, Eriksson U . Characterization of a plasma retinol-binding protein membrane receptor expressed in the retinal pigment epithelium. J Biol Chem 1992; 267: 23035–23042.

    CAS  PubMed  Google Scholar 

  10. Thompson DA, Gal A . Vitamin A metabolism in the retinal pigment epithelium: genes, mutations, and diseases. Prog Retin Eye Res 2003; 22: 683–703.

    Article  CAS  PubMed  Google Scholar 

  11. Jin M, Li S, Moghrabi WN, Sun H, Travis GH . Rpe65 is the retinoid isomerase in bovine retinal pigment epithelium. Cell 2005; 122: 449–459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moiseyev G, Chen Y, Takahashi Y, Wu BX, Ma JX . RPE65 is the isomerohydrolase in the retinoid visual cycle. Proc Natl Acad Sci USA 2005; 102: 12413–12418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Marlhens F, Bareil C, Griffoin JM, Zrenner E, Amalric P, Eliaou C et al. Mutations in RPE65 cause Leber's congenital amaurosis. Nat Genet 1997; 17: 139–141.

    Article  CAS  PubMed  Google Scholar 

  14. Gu SM, Thompson DA, Srikumari CR, Lorenz B, Finckh U, Nicoletti A et al. Mutations in RPE65 cause autosomal recessive childhood-onset severe retinal dystrophy. Nat Genet 1997; 17: 194–197.

    Article  CAS  PubMed  Google Scholar 

  15. Lorenz B, Gyurus P, Preising M, Bremser D, Gu S, Andrassi M et al. Early-onset severe rod-cone dystrophy in young children with RPE65 mutations. Invest Ophthalmol Vis Sci 2000; 41: 2735–2742.

    CAS  PubMed  Google Scholar 

  16. Aguirre GD, Baldwin V, Pearce-Kelling S, Narfstrom K, Ray K, Acland GM . Congenital stationary night blindness in the dog: common mutation in the RPE65 gene indicates founder effect. Mol Vis 1998; 4: 23.

    CAS  PubMed  Google Scholar 

  17. Veske A, Nilsson SE, Narfstrom K, Gal A . Retinal dystrophy of Swedish Briard/Briard-beagle dogs is due to a 4-bp deletion in RPE65. Genomics 1999; 57: 57–61.

    Article  CAS  PubMed  Google Scholar 

  18. Acland GM, Aguirre GD, Ray J, Zhang Q, Aleman TS, Cideciyan AV et al. Gene therapy restores vision in a canine model of childhood blindness. Nat Genet 2001; 28: 92–95.

    CAS  PubMed  Google Scholar 

  19. Acland GM, Aguirre GD, Bennett J, Aleman TS, Cideciyan AV, Bennicelli J et al. Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness. Mol Ther 2005; 12: 1072–1082.

    Article  CAS  PubMed  Google Scholar 

  20. Narfstrom K, Katz ML, Bragadottir R, Seeliger M, Boulanger A, Redmond TM et al. Functional and structural recovery of the retina after gene therapy in the RPE65 null mutation dog. Invest Ophthalmol Vis Sci 2003; 44: 1663–1672.

    Article  PubMed  Google Scholar 

  21. Narfstrom K, Vaegan, Katz M, Bragadottir R, Rakoczy EP, Seeliger M . Assessment of structure and function over a 3-year period after gene transfer in RPE65−/− dogs. Doc Ophthalmol 2005; 111: 39–48.

    Article  PubMed  Google Scholar 

  22. Weber M, Rabinowitz J, Provost N, Conrath H, Folliot S, Briot D et al. Recombinant adeno-associated virus serotype 4 mediates unique and exclusive long-term transduction of retinal pigmented epithelium in rat, dog, and nonhuman primate after subretinal delivery. Mol Ther 2003; 7: 774–781.

    Article  CAS  PubMed  Google Scholar 

  23. Le Meur G, Weber M, Pereon Y, Mendes-Madeira A, Nivard D, Deschamps JY et al. Postsurgical assessment and long-term safety of recombinant adeno-associated virus-mediated gene transfer into the retinas of dogs and primates. Arch Ophthalmol 2005; 123: 500–506.

    Article  CAS  PubMed  Google Scholar 

  24. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W et al. Optical coherence tomography. Science 1991; 254: 1178–1181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fujimoto JG, Brezinski ME, Tearney GJ, Boppart SA, Bouma B, Hee MR et al. Optical biopsy and imaging using optical coherence tomography. Nat Med 1995; 1: 970–972.

    Article  CAS  PubMed  Google Scholar 

  26. Holopigian K, Seiple W, Greenstein VC, Hood DC, Carr RE . Local cone and rod system function in progressive cone dystrophy. Invest Ophthalmol Vis Sci 2002; 43: 2364–2373.

    PubMed  Google Scholar 

  27. Stieger K, Le Meur G, Lasne F, Weber M, Deschamps JY, Nivard D et al. Long-term doxycycline-regulated transgene expression in the retina of nonhuman primates following subretinal injection of recombinant AAV vectors. Mol Ther 2006; 13: 967–975.

    Article  CAS  PubMed  Google Scholar 

  28. Pang JJ, Chang B, Kumar A, Nusinowitz S, Noorwez SM, Li J et al. Gene therapy restores vision-dependent behavior as well as retinal structure and function in a mouse model of RPE65 Leber congenital amaurosis. Mol Ther 2005; 10: 10.

    Google Scholar 

  29. Woodruff ML, Wang Z, Chung HY, Redmond TM, Fain GL, Lem J . Spontaneous activity of opsin apoprotein is a cause of Leber congenital amaurosis. Nat Genet 2003; 35: 158–164.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang X, De Alwis M, Hart SL, Fitzke FW, Inglis SC, Boursnell ME et al. High-titer recombinant adeno-associated virus production from replicating amplicons and herpes vectors deleted for glycoprotein H. Hum Gene Ther 1999; 10: 2527–2537.

    Article  CAS  PubMed  Google Scholar 

  31. Rabinowitz JE, Rolling F, Li C, Conrath H, Xiao W, Xiao X et al. Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J Virol 2002; 76: 791–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gao GP, Qu G, Faust LZ, Engdahl RK, Xiao W, Hughes JV et al. High-titer adeno-associated viral vectors from a Rep/Cap cell line and hybrid shuttle virus. Hum Gene Ther 1998; 9: 2353–2362.

    Article  CAS  PubMed  Google Scholar 

  33. Salvetti A, Oreve S, Chadeuf G, Favre D, Cherel Y, Champion-Arnaud P et al. Factors influencing recombinant adeno-associated virus production. Hum Gene Ther 1998; 9: 695–706.

    Article  CAS  PubMed  Google Scholar 

  34. Marmor MF, Zrenner E . Standard for clinical electroretinography (1999 update). International Society for Clinical Electrophysiology of Vision. Doc Ophthalmol 1998; 97: 143–156.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Matthew Ellinwood for critical reading and editing. We also thank the Vector Core (www.vectors.nantes.inserm.fr) at the University Hospital of Nantes, supported by the Association Française contre les Myopathies (AFM), INSERM and the Fondation pour la Thérapie Génique en Pays de la Loire. This work was also supported by the French Lions Club and the Lions Clubs International foundation (LCIF). We thank the Association du Berger de Brie and the Fédération des Aveugles et Handicapés Visuels de France. We also thank Graham Holder and Chris Hogg for assistance with the ERG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Rolling.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website (http://www.nature.com/gt)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Meur, G., Stieger, K., Smith, A. et al. Restoration of vision in RPE65-deficient Briard dogs using an AAV serotype 4 vector that specifically targets the retinal pigmented epithelium. Gene Ther 14, 292–303 (2007). https://doi.org/10.1038/sj.gt.3302861

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302861

Keywords

This article is cited by

Search

Quick links