Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Characterization of capsid-modified adenovirus vectors containing heterologous peptides in the fiber knob, protein IX, or hexon

Abstract

Adenovirus (Ad) vectors are widely used in gene therapy and in vitro/in vivo gene transfer because of their high transduction efficiency. However, Ad vector application in the gene therapy field is limited by poor transduction into cells not expressing the primary receptor, coxsackievirus and adenovirus receptor. To overcome this problem, several types of capsid-modified Ad vectors have been developed. The HI loop or C-terminus of the fiber knob, the C-terminus of the protein IX (pIX) and the hypervariable region 5 of the hexon are promising candidate locations for displaying foreign peptide sequences. In the present study, we constructed Ad vectors in which each of the above region was modified by a simple in vitro ligation-based method, and examined the characterization of each Ad vector containing the FLAG tag (DYKDDDDK) or RGD (CDCRGDCFC) peptide. Enzyme-linked immunosorbent assay examining the surface expression of foreign peptides on the virus suggested that foreign peptides are exposed on virion surfaces in all types vectors and that the hexon was the most efficiently reacted, reflecting the copy number of the modification. However, in the case of the transduction efficiency of Ad vectors containing the RGD peptides, the modification of pIX and the hexon showed no effect. The modification of the HI loop of the fiber knob was the most efficient, followed by the modification of the C-terminus region of the fiber knob. These comparative analyses, together with a simple construction method for each modified Ad vector, could provide basic information for the generation of capsid-modified Ad vectors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 5
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Kovesdi I, Brough DE, Bruder JT, Wickham TJ . Adenoviral vectors for gene transfer. Curr Opin Biotechnol 1997; 8: 583–589.

    Article  CAS  PubMed  Google Scholar 

  2. Benihoud K, Yeh P, Perricaudet M . Adenovirus vectors for gene delivery. Curr Opin Biotechnol 1999; 10: 440–447.

    Article  CAS  PubMed  Google Scholar 

  3. Wickham TJ . Targeting adenovirus. Gene Therapy 2000; 7: 110–114.

    Article  CAS  PubMed  Google Scholar 

  4. Mizuguchi H, Hayakawa T . Targeted adenovirus vectors. Hum Gene Ther 2004; 15: 1034–1044.

    Article  CAS  PubMed  Google Scholar 

  5. Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997; 275: 1320–1323.

    Article  CAS  PubMed  Google Scholar 

  6. Tomko RP, Xu R, Philipson L . HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc Natl Acad Sci USA 1997; 94: 3352–3356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dmitriev I, Krasnykh V, Miller CR, Wang M, Kashentseva E, Mikheeva G et al. An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor-independent cell entry mechanism. J Virol 1998; 72: 9706–9713.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Staba MJ, Wickham TJ, Kovesdi I, Hallahan DE . Modifications of the fiber in adenovirus vectors increase tropism for malignant glioma models. Cancer Gene Ther 2000; 7: 13–19.

    Article  CAS  PubMed  Google Scholar 

  9. Mizuguchi H, Koizumi N, Hosono T, Utoguchi N, Watanabe Y, Kay MA et al. A simplified system for constructing recombinant adenoviral vectors containing heterologous peptides in the HI loop of their fiber knob. Gene Therapy 2001; 8: 730–735.

    Article  CAS  PubMed  Google Scholar 

  10. Koizumi N, Mizuguchi H, Utoguchi N, Watanabe Y, Hayakawa T . Generation of fiber-modified adenovirus vectors containing heterologous peptides in both the HI loop and C terminus of the fiber knob. J Gene Med 2003; 5: 267–276.

    Article  CAS  PubMed  Google Scholar 

  11. Dmitriev IP, Kashentseva EA, Curiel DT . Engineering of adenovirus vectors containing heterologous peptide sequences in the C terminus of capsid protein IX. J Virol 2002; 76: 6893–6899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ghosh-Choudhury G, Haj-Ahmad Y, Graham FL . Protein IX, a minor component of the human adenovirus capsid, is essential for the packaging of full length genomes. EMBO J 1987; 6: 1733–1739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Furcinitti PS, van Oostrum J, Burnett RM . Adenovirus polypeptide IX revealed as capsid cement by difference images from electron microscopy and crystallography. EMBO J 1989; 8: 3563–3570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rosa-Calatrava M, Grave L, Puvion-Dutilleul F, Chatton B, Kedinger C . Functional analysis of adenovirus protein IX identifies domains involved in capsid stability, transcriptional activity, and nuclear reorganization. J Virol 2001; 75: 7131–7141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Le LP, Everts M, Dmitriev IP, Davydova JG, Yamamoto M, Curiel DT . Fluorescently labeled adenovirus with pIX-EGFP for vector detection. Mol Imag 2004; 3: 105–116.

    Article  CAS  Google Scholar 

  16. Meulenbroek RA, Sargent KL, Lunde J, Jasmin BJ, Parks RJ . Use of adenovirus protein IX (pIX) to display large polypeptides on the virion--generation of fluorescent virus through the incorporation of pIX-GFP. Mol Ther 2004; 9: 617–624.

    Article  CAS  PubMed  Google Scholar 

  17. Li J, Le L, Sibley DA, Mathis JM, Curiel DT . Genetic incorporation of HSV-1 thymidine kinase into the adenovirus protein IX for functional display on the virion. Virology 2005; 338: 247–258.

    Article  CAS  PubMed  Google Scholar 

  18. Vellinga J, Rabelink MJ, Cramer SJ, van den Wollenberg DJ, Van der Meulen H, Leppard KN et al. Spacers increase the accessibility of peptide ligands linked to the carboxyl terminus of adenovirus minor capsid protein IX. J Virol 2004; 78: 3470–3479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sumida SM, Truitt DM, Lemckert AA, Vogels R, Custers JH, Addo MM et al. Neutralizing antibodies to adenovirus serotype 5 vaccine vectors are directed primarily against the adenovirus hexon protein. J Immunol 2005; 174: 7179–7185.

    Article  CAS  PubMed  Google Scholar 

  20. Roberts DM, Nanda A, Havenga MJ, Abbink P, Lynch DM, Ewald BA et al. Hexon-chimaeric adenovirus serotype 5 vectors circumvent pre-existing anti-vector immunity. Nature 2006; 441: 239–243.

    Article  CAS  PubMed  Google Scholar 

  21. Vigne E, Mahfouz I, Dedieu JF, Brie A, Perricaudet M, Yeh P . RGD inclusion in the hexon monomer provides adenovirus type 5-based vectors with a fiber knob-independent pathway for infection. J Virol 1999; 73: 5156–5161.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu H, Han T, Belousova N, Krasnykh V, Kashentseva E, Dmitriev I et al. Identification of sites in adenovirus hexon for foreign peptide incorporation. J Virol 2005; 79: 3382–3390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mizuguchi H, Kay MA . A simple method for constructing E1- and E1/E4-deleted recombinant adenoviral vectors. Hum Gene Ther 1999; 10: 2013–2017.

    Article  CAS  PubMed  Google Scholar 

  24. Mizuguchi H, Kay MA . Efficient construction of a recombinant adenovirus vector by an improved in vitro ligation method. Hum Gene Ther 1998; 9: 2577–2583.

    Article  CAS  PubMed  Google Scholar 

  25. Mizuguchi H, Xu ZL, Sakurai F, Mayumi T, Hayakawa T . Tight positive regulation of transgene expression by a single adenovirus vector containing the rtTA and tTS expression cassettes in separate genome regions. Hum Gene Ther 2003; 14: 1265–1277.

    Article  CAS  PubMed  Google Scholar 

  26. Maizel Jr JV, White DO, Scharff MD . The polypeptides of adenovirus. I. Evidence for multiple protein components in the virion and a comparison of types 2, 7A, and 12. Virology 1968; 36: 115–125.

    Article  CAS  PubMed  Google Scholar 

  27. Caravokyri C, Leppard KN . Constitutive episomal expression of polypeptide IX (pIX) in a 293-based cell line complements the deficiency of pIX mutant adenovirus type 5. J Virol 1995; 69: 6627–6633.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Koizumi N, Mizuguchi H, Hosono T, Ishii-Watabe A, Uchida E, Utoguchi N et al. Efficient gene transfer by fiber-mutant adenoviral vectors containing RGD peptide. Biochim Biophys Acta 2001; 1568: 13–20.

    Article  CAS  PubMed  Google Scholar 

  29. Koivunen E, Wang B, Ruoslahti E . Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins. Biotechnology (New York) 1995; 13: 265–270.

    CAS  Google Scholar 

  30. Pasqualini R, Koivunen E, Ruoslahti E . Alpha v integrins as receptors for tumor targeting by circulating ligands. Nat Biotechnol 1997; 15: 542–546.

    Article  CAS  PubMed  Google Scholar 

  31. Arap W, Pasqualini R, Ruoslahti E . Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 1998; 279: 377–380.

    Article  CAS  PubMed  Google Scholar 

  32. Vellinga J, Uil TG, de Vrij J, Rabelink MJ, Lindholm L, Hoeben RC . A system for efficient generation of adenovirus protein IX-producing helper cell lines. J Gene Med 2006; 8: 147–154.

    Article  CAS  PubMed  Google Scholar 

  33. Campos SK, Barry MA . Comparison of adenovirus fiber, protein IX, and hexon capsomeres as scaffolds for vector purification and cell targeting. Virology 2006; 349: 453–462.

    Article  CAS  PubMed  Google Scholar 

  34. Legrand V, Spehner D, Schlesinger Y, Settelen N, Pavirani A, Mehtali M . Fiberless recombinant adenoviruses: virus maturation and infectivity in the absence of fiber. J Virol 1999; 73: 907–919.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Von Seggern DJ, Chiu CY, Fleck SK, Stewart PL, Nemerow GR . A helper-independent adenovirus vector with E1, E3, and fiber deleted: structure and infectivity of fiberless particles. J Virol 1999; 73: 1601–1608.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author thanks Tomomi Sasaki for technical assistance. This work was supported by grants from the Ministry of Health, Labor, and Welfare of Japan. NK is the recipient of a fellowship from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Mizuguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurachi, S., Koizumi, N., Sakurai, F. et al. Characterization of capsid-modified adenovirus vectors containing heterologous peptides in the fiber knob, protein IX, or hexon. Gene Ther 14, 266–274 (2007). https://doi.org/10.1038/sj.gt.3302859

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302859

Keywords

This article is cited by

Search

Quick links