Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Using magnetic forces to enhance non-viral gene transfer to airway epithelium in vivo

Abstract

We have assessed whether magnetic forces (magnetofection) can enhance non-viral gene transfer to the airways. TransMAGPEI, a superparamagnetic particle was coupled to Lipofectamine 2000 or cationic lipid 67 (GL67)/plasmid DNA (pDNA) liposome complexes. In vitro transfection with these formulations resulted in approximately 300- and 30-fold increase in reporter gene expression, respectively, after exposure to a magnetic field, but only at suboptimal pDNA concentrations. Because GL67 has been formulated for in vivo use, we next assessed TransMAGPEI in the murine nasal epithelium in vivo, and compared this to naked pDNA. At the concentrations required for in vivo experiments, precipitation of magnetic complexes was seen. After extensive optimization, addition of non-precipitated magnetic particles resulted in approximately seven- and 90-fold decrease in gene expression for naked pDNA and GL67/pDNA liposome complexes, respectively, compared to non-magnetic particles. Thus, whereas exposure to a magnetic field improved in vitro transfection efficiency, translation to the in vivo setting remains difficult.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Crystal RG, McElvaney NG, Rosenfeld MA, Chu CS, Mastrangeli A, Hay JG et al. Administration of an adenovirus containing the human CFTR cDNA to the respiratory tract of individuals with cystic fibrosis. Nat Genet 1994; 8: 42–51.

    Article  CAS  Google Scholar 

  2. Caplen NJ, Alton EW, Middleton PG, Dorin JR, Stevenson BJ, Gao X et al. Liposome-mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Nat Med 1995; 1: 39–46.

    Article  CAS  Google Scholar 

  3. Gill DR, Southern KW, Mofford KA, Seddon T, Huang L, Sorgi F et al. A placebo-controlled study of liposome-mediated gene transfer to the nasal epithelium of patients with cystic fibrosis. Gene Therapy 1997; 4: 199–209.

    Article  CAS  Google Scholar 

  4. Porteous DJ, Dorin JR, McLachlan G, Davidson-Smith H, Davidson H, Stevenson BJ et al. Evidence for safety and efficacy of DOTAP cationic liposome mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Gene Therapy 1997; 4: 210–218.

    Article  CAS  Google Scholar 

  5. Flotte TR, Zeitlin PL, Reynolds TC, Heald AE, Pedersen P, Beck S et al. Phase I trial of intranasal and endobronchial administration of a recombinant adeno-associated virus serotype 2 (rAAV2)-CFTR vector in adult cystic fibrosis patients: a two-part clinical study. Hum Gene Ther 2003; 14: 1079–1088.

    Article  CAS  Google Scholar 

  6. Ferrari S, Geddes DM, Alton EW . Barriers to and new approaches for gene therapy and gene delivery in cystic fibrosis. Adv Drug Deliv Rev 2002; 54: 1373–1393.

    Article  CAS  Google Scholar 

  7. Ferrari S, Kitson C, Farley R, Steel R, Marriott C, Parkins DA et al. Mucus altering agents as adjuncts for nonviral gene transfer to airway epithelium. Gene Therapy 2001; 8: 1380–1386.

    Article  CAS  Google Scholar 

  8. Wang G, Zabner J, Deering C, Launspach J, Shao J, Bodner M et al. Increasing epithelial junction permeability enhances gene transfer to airway epithelia in vivo. Am J Resp Cell Mol Biol 2000; 22: 129–138.

    Article  Google Scholar 

  9. Coyne CB, Kelly MM, Boucher RC, Johnson LG . Enhanced epithelial gene transfer by modulation of tight junctions with sodium caprate. Am J Resp Cell Mol Biol 2000; 23: 602–609.

    Article  CAS  Google Scholar 

  10. Chu Q, St George JA, Lukason M, Cheng SH, Scheule RK, Eastman SJ . EGTA enhancement of adenovirus-mediated gene transfer to mouse tracheal epithelium in vivo. Hum Gene Ther 2001; 12: 455–467.

    Article  CAS  Google Scholar 

  11. Yonemitsu Y, Kitson C, Ferrari S, Farley R, Griesenbach U, Judd D et al. Efficient gene transfer to airway epithelium using recombinant Sendai virus. Nat Biotechnol 2000; 18: 970–973.

    Article  CAS  Google Scholar 

  12. Auricchio A, O’Connor E, Weiner D, Gao GP, Hildinger M, Wang L et al. Noninvasive gene transfer to the lung for systemic delivery of therapeutic proteins. J Clin Invest 2002; 110: 499–504.

    Article  CAS  Google Scholar 

  13. Sandalon Z, Bruckheimer EM, Lustig KH, Rogers LC, Peluso RW, Burstein H . Secretion of a TNFR:Fc fusion protein following pulmonary administration of pseudotyped adeno-associated virus vectors. J Virol 2004; 78: 12355–12365.

    Article  CAS  Google Scholar 

  14. Moss RB, Rodman D, Spencer LT, Aitken ML, Zeitlin PL, Waltz D et al. Repeated adeno-associated virus serotype 2 aerosol-mediated cystic fibrosis transmembrane regulator gene transfer to the lungs of patients with cystic fibrosis: a multicenter, double-blind, placebo-controlled trial. Chest 2004; 125: 509–521.

    Article  Google Scholar 

  15. Hyde SC, Southern KW, Gileadi U, Fitzjohn EM, Mofford KA, Waddell BE et al. Repeat administration of DNA/liposomes to the nasal epithelium of patients with cystic fibrosis. Gene Therapy 2000; 7: 1156–1165.

    Article  CAS  Google Scholar 

  16. Ziady AG, Kelley TJ, Milliken E, Ferkol T, Davis PB . Functional evidence of CFTR gene transfer in nasal epithelium of cystic fibrosis mice in vivo following luminal application of DNA complexes targeted to the serpin–enzyme complex receptor. Mol Ther 2002; 5: 413–419.

    Article  CAS  Google Scholar 

  17. Ziady AG, Gedeon CR, Miller T, Quan W, Payne JM, Hyatt SL et al. Transfection of airway epithelium by stable PEGylated poly-L-lysine DNA nanoparticles in vivo. Mol Ther 2003; 8: 936–947.

    Article  CAS  Google Scholar 

  18. Zhang G, Gao X, Song YK, Vollmer R, Stolz DB, Gasiorowski JZ et al. Hydroporation as the mechanism of hydrodynamic delivery. Gene Therapy 2004; 11: 675–682.

    Article  CAS  Google Scholar 

  19. Dean DA, Machado-Aranda D, Blair-Parks K, Yeldandi AV, Young JL . Electroporation as a method for high-level nonviral gene transfer to the lung. Gene Therapy 2003; 10: 1608–1615.

    Article  CAS  Google Scholar 

  20. Amabile PG, Waugh JM, Lewis TN, Elkins CJ, Janas W, Dake MD . High-efficiency endovascular gene delivery via therapeutic ultrasound. J Am Coll Cardiol 2001; 37: 1975–1980.

    Article  CAS  Google Scholar 

  21. Huber PE, Mann MJ, Melo LG, Ehsan A, Kong D, Zhang L et al. Focused ultrasound (HIFU) induces localized enhancement of reporter gene expression in rabbit carotid artery. Gene Therapy 2003; 10: 1600–1607.

    Article  CAS  Google Scholar 

  22. Alexiou C, Arnold W, Klein RJ, Parak FG, Hulin P, Bergemann C et al. Locoregional cancer treatment with magnetic drug targeting. Cancer Res 2000; 60: 6641–6648.

    CAS  PubMed  Google Scholar 

  23. Scherer F, Anton M, Schillinger U, Henke J, Bergemann C, Kruger A et al. Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Therapy 2002; 9: 102–109.

    Article  CAS  Google Scholar 

  24. Krotz F, Sohn HY, Gloe T, Plank C, Pohl U . Magnetofection potentiates gene delivery to cultured endothelial cells. J Vasc Res 2003; 40: 425–434.

    Article  Google Scholar 

  25. Krotz F, Wit C, Sohn HY, Zahler S, Gloe T, Pohl U et al. Magnetofection-A highly efficient tool for antisense oligonucleotide delivery in vitro and in vivo. Mol Ther 2003; 7: 700–710.

    Article  CAS  Google Scholar 

  26. Gersting SW, Schillinger U, Lausier J, Nicklaus P, Rudolph C, Plank C et al. Gene delivery to respiratory epithelial cells by magnetofection. J Gene Med 2004; 6: 913–922.

    Article  CAS  Google Scholar 

  27. Plank C, Schillinger U, Scherer F, Bergemann C, Remy JS, Krotz F et al. The magnetofection method: using magnetic force to enhance gene delivery. Biol Chem 2003; 384: 737–747.

    Article  CAS  Google Scholar 

  28. Huth S, Lausier J, Gersting SW, Rudolph C, Plank C, Welsch U et al. Insights into the mechanism of magnetofection using PEI-based magnetofectins for gene transfer. J Gene Med 2004; 6: 923–936.

    Article  CAS  Google Scholar 

  29. Alton EW, Stern M, Farley R, Jaffe A, Chadwick SL, Phillips J et al. Cationic lipid-mediated CFTR gene transfer to the lungs and nose of patients with cystic fibrosis: a double-blind placebo-controlled trial. Lancet 1999; 353: 947–954.

    Article  CAS  Google Scholar 

  30. Sorscher EJ, Logan JJ, Frizzell RA, Lyrene RK, Bebok Z, Dong JY et al. Informed consent to participate in a research study – gene therapy for cystic fibrosis using cationic liposome mediated gene transfer: a phase I trial of safety and efficacy in the nasal airway. Hum Gene Ther 1994; 5: 1271–1277.

    Article  Google Scholar 

  31. Hillery E, Cheng S, Geddes D, Alton E . Effects of altering dosing on cationic liposome-mediated gene transfer to the respiratory epithelium. Gene Therapy 1999; 6: 1313–1316.

    Article  CAS  Google Scholar 

  32. Gill DR, Smyth SE, Goddard CA, Pringle IA, Higgins CF, Colledge WH et al. Increased persistence of lung gene expression using plasmids containing the ubiquitin C or elongation factor 1alpha promoter. Gene Therapy 2001; 8: 1539–1546.

    Article  CAS  Google Scholar 

  33. Lee ER, Marshall J, Siegel CS, Jiang C, Yew NS, Nichols MR et al. Detailed analysis of structures and formulations of cationic lipids for efficient gene transfer to the lung. Hum Gene Ther 1996; 7: 1701–1717.

    Article  CAS  Google Scholar 

  34. Wan H, Kaestner KH, Ang SL, Ikegami M, Finkelman FD, Stahlman MT et al. Foxa2 regulates alveolarization and goblet cell hyperplasia. Development 2004; 131: 953–964.

    Article  CAS  Google Scholar 

  35. Parsons DW, Hopkins PJ, Bourne AJ, Boucher RC, Martin AJ . Airway gene transfer in mouse nasal-airways: importance of identification of epithelial type for assessment of gene transfer. Gene Therapy 2000; 7: 1810–1815.

    Article  CAS  Google Scholar 

  36. Lemoine JL, Farley R, Huang L . Mechanism of efficient transfection of the nasal airway epithelium by hypotonic shock. Gene Therapy 2005; 12: 1275–1282.

    Article  CAS  Google Scholar 

  37. Mah C, Fraites Jr TJ, Zolotukhin I, Song S, Flotte TR, Dobson J et al. Improved method of recombinant AAV2 delivery for systemic targeted gene therapy. Mol Ther 2002; 6: 106–112.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Cystic Fibrosis Trust for supporting these studies and the members of the UK Cystic Fibrosis Gene Therapy Consortium (www.cfgenetherapy.org.uk) for their advice and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U Griesenbach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xenariou, S., Griesenbach, U., Ferrari, S. et al. Using magnetic forces to enhance non-viral gene transfer to airway epithelium in vivo. Gene Ther 13, 1545–1552 (2006). https://doi.org/10.1038/sj.gt.3302803

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302803

Keywords

This article is cited by

Search

Quick links