Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

T-cell protection and enrichment through lentiviral CCR5 intrabody gene delivery

A Corrigendum to this article was published on 20 March 2007

Abstract

CCR5 is the chemokine co-receptor for R5-tropic human immunodeficiency virus type 1 (HIV-1) isolates most often associated with primary infection. We have developed an HIV-1 self-inactivating vector, CAD-R5, containing a CCR5 single-chain antibody (intrabody) gene, which when expressed in T-cell lines and primary CD4+ T cells disrupts CCR5 cell surface expression and provides protection from R5-tropic isolate exposure. Furthermore, CAD-R5 intrabody expression in primary CD4+ T cells supports significant growth and enrichment over time during HIV-1-pulsed dendritic cell–T-cell interactions. These results indicate that CCR5 intrabody-expressing CD4+ T cells are refractory against this highly efficient primary route of infection. CD34+ cells transduced with the CAD-R5 vector gave rise to CD4+ and CD8+ thymocytes in non-obese diabetic (NOD)/ severely combined-immunodeficient (SCID)-human thymus/liver (hu thy/liv) mice, suggesting that CCR5 intrabody expression can be maintained throughout differentiation without obvious cellular effects. CD4+ T cells isolated from NOD/SCID-hu thy/liv mice were resistant to R5-tropic HIV-1 challenge demonstrating the maintenance of protection. Our findings demonstrate delivery of anti-HIV-1 activity through CCR5 intrabodies in primary CD4+ T cells and CD34+ cell-derived T-cell progeny. Thus, gene delivery strategies that provide a selective survival and growth advantage for T effector cells may provide a therapeutic benefit for HIV-1-infected individuals who have failed conventional therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Alkhatib G, Combadiere C, Broder CC, Feng Y, Kennedy PE, Murphy PM et al. CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 1996; 272: 1955–1958.

    Article  CAS  PubMed  Google Scholar 

  2. Dragic T, Litwin V, Allaway GP, Martin SR, Huang Y, Nagashima KA et al. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 1996; 381: 667–673.

    Article  CAS  PubMed  Google Scholar 

  3. Feng Y, Broder CC, Kennedy PE, Berger EA . HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 1996; 272: 872–877.

    Article  CAS  PubMed  Google Scholar 

  4. O'Brien SJ, Moore JP . The effect of genetic variation in chemokines and their receptors on HIV transmission and progression to AIDS. Immunol Rev 2000; 177: 99–111.

    Article  CAS  PubMed  Google Scholar 

  5. Kozak SL, Platt EJ, Madani N, Ferro Jr FE, Peden K, Kabat D . CD4, CXCR-4, and CCR-5 dependencies for infections by primary patient and laboratory-adapted isolates of human immunodeficiency virus type 1. J Virol 1997; 71: 873–882.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhu T, Mo H, Wang N, Nam DS, Cao Y, Koup RA et al. Genotypic and phenotypic characterization of HIV-1 patients with primary infection. Science 1993; 261: 1179–1181.

    Article  CAS  PubMed  Google Scholar 

  7. Dean M, Carrington M, Winkler C, Huttley GA, Smith MW, Allikmets R et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science 1996; 273: 1856–1862.

    Article  CAS  PubMed  Google Scholar 

  8. Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 1996; 86: 367–377.

    Article  CAS  PubMed  Google Scholar 

  9. Huang Y, Paxton WA, Wolinsky SM, Neumann AU, Zhang L, He T et al. The role of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nat Med 1996; 2: 1240–1243.

    Article  CAS  PubMed  Google Scholar 

  10. Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM et al. Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 1996; 382: 722–725.

    Article  CAS  PubMed  Google Scholar 

  11. McDermott DH, Zimmerman PA, Guignard F, Kleeberger CA, Leitman SF, Murphy PM . CCR5 promoter polymorphism and HIV-1 disease progression. Multicenter AIDS Cohort Study (MACS). Lancet 1998; 352: 866–870.

    Article  CAS  PubMed  Google Scholar 

  12. Martin MP, Dean M, Smith MW, Winkler C, Gerrard B, Michael NL et al. Genetic acceleration of AIDS progression by a promoter variant of CCR5. Science 1998; 282: 1907–1911.

    Article  CAS  PubMed  Google Scholar 

  13. Yang AG, Bai X, Huang XF, Yao C, Chen S . Phenotypic knockout of HIV type 1 chemokine coreceptor CCR-5 by intrakines as potential therapeutic approach for HIV-1 infection. Proc Natl Acad Sci USA 1997; 94: 11567–11572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Qin XF, An DS, Chen IS, Baltimore D . Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc Natl Acad Sci USA 2003; 100: 183–188.

    Article  CAS  PubMed  Google Scholar 

  15. Bai J, Gorantla S, Banda N, Cagnon L, Rossi J, Akkina R . Characterization of anti-CCR5 ribozyme-transduced CD34+ hematopoietic progenitor cells in vitro and in a SCID-hu mouse model in vivo. Mol Ther 2000; 1: 244–254.

    Article  CAS  PubMed  Google Scholar 

  16. Steinberger P, Andris-Widhopf J, Buhler B, Torbett BE, Barbas III CF . Functional deletion of the CCR5 receptor by intracellular immunization produces cells that are refractory to CCR5-dependent HIV-1 infection and cell fusion. Proc Natl Acad Sci USA 2000; 97: 805–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Anderson J, Akkina R . HIV-1 resistance conferred by siRNA cosuppression of CXCR4 and CCR5 coreceptors by a bispecific lentiviral vector. AIDS Res Ther 2005; 2: 1.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cordelier P, Kulkowsky JW, Ko C, Matskevitch AA, McKee HJ, Rossi JJ et al. Protecting from R5-tropic HIV: individual and combined effectiveness of a hammerhead ribozyme and a single-chain Fv antibody that targets CCR5. Gene Therapy 2004; 11: 1627–1637.

    Article  CAS  PubMed  Google Scholar 

  19. Li MJ, Bauer G, Michienzi A, Yee JK, Lee NS, Kim J et al. Inhibition of HIV-1 infection by lentiviral vectors expressing Pol III-promoted anti-HIV RNAs. Mol Ther 2003; 8: 196–206.

    Article  CAS  PubMed  Google Scholar 

  20. Arrighi JF, Pion M, Garcia E, Escola JM, van Kooyk Y, Geijtenbeek TB et al. DC-SIGN-mediated infectious synapse formation enhances X4 HIV-1 transmission from dendritic cells to T cells. J Exp Med 2004; 200: 1279–1288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cameron PU, Freudenthal PS, Barker JM, Gezelter S, Inaba K, Steinman RM . Dendritic cells exposed to human immunodeficiency virus type-1 transmit a vigorous cytopathic infection to CD4+ T cells. Science 1992; 257: 383–387.

    Article  CAS  PubMed  Google Scholar 

  22. Gummuluru S, KewalRamani VN, Emerman M . Dendritic cell-mediated viral transfer to T cells is required for human immunodeficiency virus type 1 persistence in the face of rapid cell turnover. J Virol 2002; 76: 10692–10701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Turville SG, Santos JJ, Frank I, Cameron PU, Wilkinson J, Miranda-Saksena M et al. Immunodeficiency virus uptake, turnover, and 2-phase transfer in human dendritic cells. Blood 2004; 103: 2170–2179.

    Article  CAS  PubMed  Google Scholar 

  24. Lore K, Smed-Sorensen A, Vasudevan J, Mascola JR, Koup RA . Myeloid and plasmacytoid dendritic cells transfer HIV-1 preferentially to antigen-specific CD4+ T cells. J Exp Med 2005; 201: 2023–2033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rondon IJ, Marasco WA . Intracellular antibodies (intrabodies) for gene therapy of infectious diseases. Annu Rev Microbiol 1997; 51: 257–283.

    Article  CAS  PubMed  Google Scholar 

  26. Konopka K, Duzgunes N . Expression of CD4 controls the susceptibility of THP-1 cells to infection by R5 and X4 HIV type 1 isolates. AIDS Res Hum Retroviruses 2002; 18: 123–131.

    Article  CAS  PubMed  Google Scholar 

  27. Bleul CC, Wu L, Hoxie JA, Springer TA, Mackay CR . The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes. Proc Natl Acad Sci USA 1997; 94: 1925–1930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee B, Sharron M, Montaner LJ, Weissman D, Doms RW . Quantification of CD4, CCR5, and CXCR4 levels on lymphocyte subsets, dendritic cells, and differentially conditioned monocyte-derived macrophages. Proc Natl Acad Sci USA 1999; 96: 5215–5220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jamieson BD, Zack JA . In vivo pathogenesis of a human immunodeficiency virus type 1 reporter virus. J Virol 1998; 72: 6520–6526.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. McCune JM . Development and applications of the SCID-hu mouse model. Semin Immunol 1996; 8: 187–196.

    Article  CAS  PubMed  Google Scholar 

  31. Rabin L, Hincenbergs M, Moreno MB, Warren S, Linquist V, Datema R et al. Use of standardized SCID-hu Thy/Liv mouse model for preclinical efficacy testing of anti-human immunodeficiency virus type 1 compounds. Antimicrob Agents Chemother 1996; 40: 755–762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Aldrovandi GM, Feuer G, Gao L, Jamieson B, Kristeva M, Chen IS et al. The SCID-hu mouse as a model for HIV-1 infection. Nature 1993; 363: 732–736.

    Article  CAS  PubMed  Google Scholar 

  33. Berkowitz RD, Alexander S, Bare C, Linquist-Stepps V, Bogan M, Moreno ME et al. CCR5- and CXCR4-utilizing strains of human immunodeficiency virus type 1 exhibit differential tropism and pathogenesis in vivo. J Virol 1998; 72: 10108–10117.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bonyhadi ML, Moss K, Voytovich A, Auten J, Kalfoglou C, Plavec I et al. RevM10-expressing T cells derived in vivo from transduced human hematopoietic stem-progenitor cells inhibit human immunodeficiency virus replication. J Virol 1997; 71: 4707–4716.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Pedroza-Martins L, Gurney KB, Torbett BE, Uittenbogaart CH . Differential tropism and replication kinetics of human immunodeficiency virus type 1 isolates in thymocytes: coreceptor expression allows viral entry, but productive infection of distinct subsets is determined at the postentry level. J Virol 1998; 72: 9441–9452.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Strayer DS, Akkina R, Bunnell BA, Dropulic B, Planelles V, Pomerantz RJ et al. Current status of gene therapy strategies to treat HIV/AIDS. Mol Ther 2005; 11: 823–842.

    Article  CAS  PubMed  Google Scholar 

  37. Wolkowicz R, Nolan GP . Gene therapy progress and prospects: novel gene therapy approaches for AIDS. Gene Therapy 2005; 12: 467–476.

    Article  CAS  PubMed  Google Scholar 

  38. Kurre P, Anandakumar P, Harkey MA, Thomasson B, Kiem HP . Efficient marking of murine long-term repopulating stem cells targeting unseparated marrow cells at low lentiviral vector particle concentration. Mol Ther 2004; 9: 914–922.

    Article  CAS  PubMed  Google Scholar 

  39. Gummuluru S, Kinsey CM, Emerman M . An in vitro rapid-turnover assay for human immunodeficiency virus type 1 replication selects for cell-to-cell spread of virus. J Virol 2000; 74: 10882–10891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Takashima K, Miyake H, Kanzaki N, Tagawa Y, Wang X, Sugihara Y et al. Highly potent inhibition of human immunodeficiency virus type 1 replication by TAK-220, an orally bioavailable small-molecule CCR5 antagonist. Antimicrob Agents Chemother 2005; 49: 3474–3482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shaheen F, Collman RG . Co-receptor antagonists as HIV-1 entry inhibitors. Curr Opin Infect Dis 2004; 17: 7–16.

    Article  CAS  PubMed  Google Scholar 

  42. Humeau LM, Binder GK, Lu X, Slepushkin V, Merling R, Echeagaray P et al. Efficient lentiviral vector-mediated control of HIV-1 replication in CD4 lymphocytes from diverse HIV+ infected patients grouped according to CD4 count and viral load. Mol Ther 2004; 9: 902–913.

    Article  CAS  PubMed  Google Scholar 

  43. Mhashilkar AM, LaVecchio J, Eberhardt B, Porter-Brooks J, Boisot S, Dove JH et al. Inhibition of human immunodeficiency virus type 1 replication in vitro in acutely and persistently infected human CD4+ mononuclear cells expressing murine and humanized anti-human immunodeficiency virus type 1 Tat single-chain variable fragment intrabodies. Hum Gene Ther 1999; 10: 1453–1467.

    Article  CAS  PubMed  Google Scholar 

  44. Palella Jr FJ, Delaney KM, Moorman AC, Loveless MO, Fuhrer J, Satten GA et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N Engl J Med 1998; 338: 853–860.

    Article  PubMed  Google Scholar 

  45. Mwau M, McMichael AJ . A review of vaccines for HIV prevention. J Gene Med 2003; 5: 3–10.

    Article  PubMed  Google Scholar 

  46. Kutilek VD, Sheeter DA, Elder JH, Torbett BE . Is resistance futile? Curr Drug Targets Infect Disord 2003; 3: 295–309.

    Article  CAS  PubMed  Google Scholar 

  47. Johnson VA, Brun-Vezinet F, Clotet B, Conway B, D'Aquila RT, Demeter LM et al. Drug resistance mutations in HIV-1. Top HIV Med 2003; 11: 215–221.

    PubMed  Google Scholar 

  48. Park-Wyllie LY, Phillips EJ . Challenges of adherence management in human immunodeficiency virus pharmacotherapy. Can J Clin Pharmacol 2003; 10: 189–195.

    PubMed  Google Scholar 

  49. Richman DD . HIV chemotherapy. Nature 2001; 410: 995–1001.

    Article  CAS  PubMed  Google Scholar 

  50. Zimmerman PA, Buckler-White A, Alkhatib G, Spalding T, Kubofcik J, Combadiere C et al. Inherited resistance to HIV-1 conferred by an inactivating mutation in CC chemokine receptor 5: studies in populations with contrasting clinical phenotypes, defined racial background, and quantified risk. Mol Med 1997; 3: 23–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Strizki JM, Tremblay C, Xu S, Wojcik L, Wagner N, Gonsiorek W et al. Discovery and characterization of vicriviroc (SCH 417690), a CCR5 antagonist with potent activity against human immunodeficiency virus type 1. Antimicrob Agents Chemother 2005; 49: 4911–4919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fatkenheuer G, Pozniak AL, Johnson MA, Plettenberg A, Staszewski S, Hoepelman AI et al. Efficacy of short-term monotherapy with maraviroc, a new CCR5 antagonist, in patients infected with HIV-1. Nat Med 2005; 11: 1170–1172.

    Article  PubMed  Google Scholar 

  53. Este JA . Virus entry as a target for anti-HIV intervention. Curr Med Chem 2003; 10: 1617–1632.

    Article  CAS  PubMed  Google Scholar 

  54. Segal DJ, Goncalves J, Eberhardy S, Swan CH, Torbett BE, Li X et al. Attenuation of HIV-1 replication in primary human cells with a designed zinc finger transcription factor. J Biol Chem 2004; 279: 14509–14519.

    Article  CAS  PubMed  Google Scholar 

  55. Steinberger P, Sutton JK, Rader C, Elia M, Barbas III CF . Generation and characterization of a recombinant human CCR5-specific antibody. A phage display approach for rabbit antibody humanization. J Biol Chem 2000; 275: 36073–36078.

    Article  CAS  PubMed  Google Scholar 

  56. Berson JF, Doms RW . Structure-function studies of the HIV-1 coreceptors. Semin Immunol 1998; 10: 237–248.

    Article  CAS  PubMed  Google Scholar 

  57. Choe H, Martin KA, Farzan M, Sodroski J, Gerard NP, Gerard C . Structural interactions between chemokine receptors, gp120 Env and CD4. Semin Immunol 1998; 10: 249–257.

    Article  CAS  PubMed  Google Scholar 

  58. Doranz BJ, Lu ZH, Rucker J, Zhang TY, Sharron M, Cen YH et al. Two distinct CCR5 domains can mediate coreceptor usage by human immunodeficiency virus type 1. J Virol 1997; 71: 6305–6314.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Lee B, Sharron M, Blanpain C, Doranz BJ, Vakili J, Setoh P et al. Epitope mapping of CCR5 reveals multiple conformational states and distinct but overlapping structures involved in chemokine and coreceptor function. J Biol Chem 1999; 274: 9617–9626.

    Article  CAS  PubMed  Google Scholar 

  60. Oppermann M . Chemokine receptor CCR5: insights into structure, function, and regulation. Cell Signal 2004; 16: 1201–1210.

    Article  CAS  PubMed  Google Scholar 

  61. Li MJ, Kim J, Li S, Zaia J, Yee JK, Anderson J et al. Long-term inhibition of HIV-1 infection in primary hematopoietic cells by lentiviral vector delivery of a triple combination of anti-HIV shRNA, anti-CCR5 ribozyme, and a nucleolar-localizing TAR decoy. Mol Ther 2005; 12: 900–909.

    Article  CAS  PubMed  Google Scholar 

  62. Miyoshi H, Smith KA, Mosier DE, Verma IM, Torbett BE . Transduction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors. Science 1999; 283: 682–686.

    Article  CAS  PubMed  Google Scholar 

  63. Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996; 272: 263–267.

    Article  CAS  PubMed  Google Scholar 

  64. Goldstein H, Pettoello-Mantovani M, Anderson CM, Cordelier P, Pomerantz RJ, Strayer DS . Gene therapy using a simian virus 40-derived vector inhibits the development of in vivo human immunodeficiency virus type 1 infection of severe combined immunodeficiency mice implanted with human fetal thymic and liver tissue. J Infect Dis 2002; 185: 1425–1430.

    Article  CAS  PubMed  Google Scholar 

  65. Marasco WA, LaVecchio J, Winkler A . Human anti-HIV-1 tat sFv intrabodies for gene therapy of advanced HIV-1-infection and AIDS. J Immunol Methods 1999; 231: 223–238.

    Article  CAS  PubMed  Google Scholar 

  66. Vetrugno V, Cardinale A, Filesi I, Mattei S, Sy MS, Pocchiari M et al. KDEL-tagged anti-prion intrabodies impair PrP lysosomal degradation and inhibit scrapie infectivity. Biochem Biophys Res Commun 2005; 338: 1791–1797.

    Article  CAS  PubMed  Google Scholar 

  67. Douek DC, Brenchley JM, Betts MR, Ambrozak DR, Hill BJ, Okamoto Y et al. HIV preferentially infects HIV-specific CD4+ T cells. Nature 2002; 417: 95–98.

    Article  CAS  PubMed  Google Scholar 

  68. Kuhmann SE, Pugach P, Kunstman KJ, Taylor J, Stanfield RL, Snyder A et al. Genetic and phenotypic analyses of human immunodeficiency virus type 1 escape from a small-molecule CCR5 inhibitor. J Virol 2004; 78: 2790–2807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Trkola A, Kuhmann SE, Strizki JM, Maxwell E, Ketas T, Morgan T et al. HIV-1 escape from a small molecule, CCR5-specific entry inhibitor does not involve CXCR4 use. Proc Natl Acad Sci USA 2002; 99: 395–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Glass WG, McDermott DH, Lim JK, Lekhong S, Yu SF, Frank WA et al. CCR5 deficiency increases risk of symptomatic West Nile virus infection. J Exp Med 2006; 203: 35–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lusso P, Cocchi F, Balotta C, Markham PD, Louie A, Farci P et al. Growth of macrophage-tropic and primary human immunodeficiency virus type 1 (HIV-1) isolates in a unique CD4+ T-cell clone (PM1): failure to downregulate CD4 and to interfere with cell-line-tropic HIV-1. J Virol 1995; 69: 3712–3720.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Wu L, Martin TD, Carrington M, KewalRamani VN . Raji B cells, misidentified as THP-1 cells, stimulate DC-SIGN-mediated HIV transmission. Virology 2004; 318: 17–23.

    Article  CAS  PubMed  Google Scholar 

  73. Halene S, Wang L, Cooper RM, Bockstoce DC, Robbins PB, Kohn DB . Improved expression in hematopoietic and lymphoid cells in mice after transplantation of bone marrow transduced with a modified retroviral vector. Blood 1999; 94: 3349–3357.

    CAS  PubMed  Google Scholar 

  74. Aviles Mendoza GJ, Seidel NE, Otsu M, Anderson SM, Simon-Stoos K, Herrera A et al. Comparison of five retrovirus vectors containing the human IL-2 receptor gamma chain gene for their ability to restore T and B lymphocytes in the X-linked severe combined immunodeficiency mouse model. Mol Ther 2001; 3: 565–573.

    Article  CAS  PubMed  Google Scholar 

  75. Miyoshi H, Blomer U, Takahashi M, Gage FH, Verma IM . Development of a self-inactivating lentivirus vector. J Virol 1998; 72: 8150–8157.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Agarwal M, Austin TW, Morel F, Chen J, Bohnlein E, Plavec I . Scaffold attachment region-mediated enhancement of retroviral vector expression in primary T cells. J Virol 1998; 72: 3720–3728.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Auten J, Agarwal M, Chen J, Sutton R, Plavec I . Effect of scaffold attachment region on transgene expression in retrovirus vector-transduced primary T cells and macrophages. Hum Gene Ther 1999; 10: 1389–1399.

    Article  CAS  PubMed  Google Scholar 

  78. Kurre P, Morris J, Thomasson B, Kohn DB, Kiem HP . Scaffold attachment region-containing retrovirus vectors improve long-term proviral expression after transplantation of GFP-modified CD34+ baboon repopulating cells. Blood 2003; 102: 3117–3119.

    Article  CAS  PubMed  Google Scholar 

  79. Donello JE, Loeb JE, Hope TJ . Woodchuck hepatitis virus contains a tripartite posttranscriptional regulatory element. J Virol 1998; 72: 5085–5092.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Gallay P, Stitt V, Mundy C, Oettinger M, Trono D . Role of the karyopherin pathway in human immunodeficiency virus type 1 nuclear import. J Virol 1996; 70: 1027–1032.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Mielke C, Kohwi Y, Kohwi-Shigematsu T, Bode J . Hierarchical binding of DNA fragments derived from scaffold-attached regions: correlation of properties in vitro and function in vivo. Biochemistry 1990; 29: 7475–7485.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Leslie Romero and Laura Crisa, PhD, MD, TSRI, for assistance with the NOD/SCID-hu thy/liv surgeries and mouse maintenance, Mike McCune, MD, PhD, Cheryl Stoddart, PhD, and Jose Rivera, UCSF, for SCID-hu training, and Jerry Zack, PhD, and Beth Jamieson, PhD, UCLA, for mHSA viruses. We are grateful for the support of the late Dr Nava Sarver. We also thank the UCSD CFAR (5P30 AI36214) for p24 determination. BB was supported by a Fellowship from UARP F00-SRI-036. This research was supported by NIH/NAID AI49165, AI40882 and AI29329-16 (BET) and GM065059 (CFB). This is publication 17294-MEM from The Scripps Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B E Torbett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swan, C., Bühler, B., Tschan, M. et al. T-cell protection and enrichment through lentiviral CCR5 intrabody gene delivery. Gene Ther 13, 1480–1492 (2006). https://doi.org/10.1038/sj.gt.3302801

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302801

Keywords

This article is cited by

Search

Quick links