Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cooperative effects of adenoviral vector-mediated interleukin 12 gene therapy with radiotherapy in a preclinical model of metastatic prostate cancer

Abstract

We investigated the potential benefits of combining adenoviral vector mediated in situ interleukin-12 (AdmIL-12) gene therapy with radiation therapy (XRT) to enhance therapeutic efficacy. In a metastatic mouse prostate cancer cell line, 178-2 BMA, AdmIL-12+XRT demonstrated enhanced therapeutic activities in vitro as determined by clonogenic survival, apoptosis, and mIL-12 levels. At the molecular level, increased expression of tumor necrosis factor-α mRNA was specific for the combined therapy. In a subcutaneous 178-2 BMA in vivo model, the combination of AdmIL-12+XRT produced statistically significant tumor growth suppression compared to control vector Adβgal, Adβgal XRT, or AdmIL-12 as monotherapy. In addition, significant prolongation of survival was demonstrated for the combination of AdmIL-12+XRT. The combination of AdmIL-12+XRT significantly suppressed both spontaneous and pre-established lung metastases, and led to a prolonged elevation of serum IL-12 and significantly increased natural killer (NK) activities. Importantly, in vivo depletion of NK cells resulted in significant attenuation of the antimetastatic activities of AdmIL-12 alone or AdmIL-12+XRT. These combined effects suggest that AdIL-12 gene therapy together with radiotherapy may achieve maximal tumor control (both local and systemic) in selected prostate cancer patients via radio-gene therapy induced local cytotoxicity and local and systemic antitumor immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Jemal A, Murray T, Ghafoor A, Ward E, Samuels A, Tiwari RC et al. Cancer statistics. Ca Cancer J Clin 2005; 55: 10–30.

    Article  PubMed  Google Scholar 

  2. Timme TL, Satoh T, Tahir SA, Wang H, Teh BS, Butler EB et al. Therapeutic targets for metastatic prostate cancer. Curr Drug Targets 2003; 4: 251–261.

    Article  CAS  PubMed  Google Scholar 

  3. Miles BJ, Shalev M, Aguilar-Cordova E, Timme TL, Lee HM, Yang G et al. Prostate-specific antigen response and systemic T cell activation after in situ gene therapy in prostate cancer patients failing radiotherapy. Hum Gene Ther 2001; 12: 1955–1967.

    Article  CAS  PubMed  Google Scholar 

  4. Ayala G, Wheeler TM, Shalev M, Thompson TC, Miles B, Aguilar-Cordova E et al. Cytopathic effect of in situ gene therapy in prostate cancer. Hum Pathol 2000; 31: 866–870.

    Article  CAS  PubMed  Google Scholar 

  5. Teh BS, Ayala G, Aguilar L, Mai W-Y, Timme TL, Vlachaki MT et al. Late toxicity of a phase I/II trial evaluating combined radiotherapy and in situ gene-therapy with or without hormonal therapy in the treatment of prostate ancer. Int J Radiat Oncol Biol Phys 2003; 57: s275.

    Article  Google Scholar 

  6. Teh BS, Ayala G, Aguilar L, Mai WY, Timme TL, Vlachaki MT et al. Phase I–II trial evaluating combined intensity-modulated radiotherapy and in situ gene therapy with or without hormonal therapy in treatment of prostate cancer-interim report on PSA response and biopsy data. Int J Radiat Oncol Biol Phys 2004; 58: 1520–1529.

    Article  CAS  PubMed  Google Scholar 

  7. Satoh T, Teh BS, Timme TL, Mai WY, Gdor Y, Kusaka N et al. Enhanced systemic T-cell activation after in situ gene therapy with radiotherapy in prostate cancer patients. Int J Radiat Oncol Biol Phys 2004; 59: 562–571.

    Article  CAS  PubMed  Google Scholar 

  8. Trinchieri G . Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 2003; 3: 133–146.

    Article  CAS  PubMed  Google Scholar 

  9. Brunda MJ, Luistro L, Warrier RR, Wright RB, Hubbard BR, Murphy M et al. Antitumor and antimetastatic activity of interleukin 12 against murine tumors. J Exp Med 1993; 178: 1223–1230.

    Article  CAS  PubMed  Google Scholar 

  10. Atkins MB, Robertson MJ, Gordon M, Lotze MT, DeCoste M, DuBois JS et al. Phase I evaluation of intravenous recombinant human interleukin 12 in patients with advanced malignancies. Clin Cancer Res 1997; 3: 409–417.

    CAS  PubMed  Google Scholar 

  11. Leonard JP, Sherman ML, Fisher GL, Buchanan LJ, Larsen G, Atkins MB et al. Effects of single-dose interleukin-12 exposure on interleukin-12-associated toxicity and interferon-gamma production. Blood 1997; 90: 2541–2548.

    CAS  PubMed  Google Scholar 

  12. Thompson TC, Timme TL, Ebara S, Sato T, Yang G, Wang J et al. In situ gene therapy for prostate cancer: immunomodulatory approaches. Exp Opin Biol Ther 2001; 1: 481–495.

    Article  CAS  Google Scholar 

  13. Nasu Y, Bangma CH, Hull GW, Lee HM, Hu J, Wang J et al. Adenovirus-mediated interleukin-12 gene therapy for prostate cancer: suppression of orthotopic tumor growth and pre-established lung metastases in an orthotopic model. Gene Therapy 1999; 6: 338–349.

    Article  CAS  PubMed  Google Scholar 

  14. Hull GW, McCurdy MA, Nasu Y, Bangma CH, Yang G, Shimura S et al. Prostate cancer gene therapy: comparison of adenovirus-mediated expression of interleukin 12 with interleukin 12 plus B7-1 for in situ gene therapy and gene-modified, cell-based vaccines. Clin Cancer Res 2000; 6: 4101–4109.

    CAS  PubMed  Google Scholar 

  15. Nasu Y, Bangma C, Hull G, Yang G, Wang J, Shimura S et al. Combination gene therapy with adenoviral vector-mediated HSV-tk+GCV and IL-12 in an orthotopic mouse model for prostate cancer. Prostate Cancer Prostatic Dis 2001; 4: 44–55.

    Article  CAS  PubMed  Google Scholar 

  16. Shaker MR, Yang G, Timme TL, Park SH, Kadmon D, Ren C et al. Dietary 4-HPR suppresses the development of bone metastasis in vivo in a mouse model of prostate cancer progression. Clin Exp Metastasis 2000; 18: 429–438.

    Article  CAS  PubMed  Google Scholar 

  17. Thompson TC . In situ gene therapy for prostate cancer. Oncol Res 1999; 11: 1–8.

    CAS  PubMed  Google Scholar 

  18. Teh BS, Woo SY, Butler EB . Intensity modulated radiation therapy (IMRT): a new promising technology in radiation oncology. Oncologist 1999; 4: 433–442.

    CAS  PubMed  Google Scholar 

  19. Teh BS, Mai WY, Grant III WH, Chiu JK, Lu HH, Carpenter LS et al. Intensity modulated radiotherapy (IMRT) decreases treatment-related morbidity and potentially enhances tumor control. Cancer Invest 2002; 20: 437–451.

    Article  PubMed  Google Scholar 

  20. Collis SJ, DeWeese TL . Enhanced radiation response through directed molecular targeting approaches. Cancer Metastasis Rev 2004; 23: 277–292.

    Article  CAS  PubMed  Google Scholar 

  21. Herman JR, Adler HL, Aguilar-Cordova E, Rojas-Martinez A, Woo S, Timme TL et al. In situ gene therapy for adenocarcinoma of the prostate: a phase I clinical trial. Hum Gene Ther 1999; 10: 1239–1249.

    Article  CAS  PubMed  Google Scholar 

  22. Shalev M, Kadmon D, Teh BS, Butler EB, Aguilar-Cordova E, Thompson TC et al. Suicide gene therapy toxicity after multiple and repeat injections in patients with localized prostate cancerm. J Urol 2000; 163: 1747–1750.

    Article  CAS  PubMed  Google Scholar 

  23. Teh BS, Aguilar-Cordova E, Kernen K, Chou C, Shalev M, Vlachaki MT et al. Phase I/II trial evaluating combined radiotherapy and in situ gene therapy with or without hormonal therapy in the treatment of prostate cancer – a preliminary report. Int J Radiat Oncol Biol Phys 2001; 51: 605–613.

    Article  CAS  PubMed  Google Scholar 

  24. Kubo H, Gardner TA, Wada Y, Koeneman KS, Gotoh A, Yang L et al. Phase I dose escalation clinical trial of adenovirus vector carrying osteocalcin promoter-driven herpes simplex virus thymidine kinase in localized and metastatic hormone-refractory prostate cancer. Hum Gene Ther 2003; 14: 227–241.

    Article  CAS  PubMed  Google Scholar 

  25. Freytag SO, Stricker H, Pegg J, Paielli D, Pradhan DG, Peabody J et al. Phase I study of replication-competent adenovirus-mediated double-suicide gene therapy in combination with conventional-dose three-dimensional conformal radiation therapy for the treatment of newly diagnosed, intermediate- to high-risk prostate cancer. Cancer Res 2003; 63: 7497–7506.

    CAS  PubMed  Google Scholar 

  26. Bramson JL, Hitt M, Addison CL, Muller WJ, Gauldie J, Graham FL . Direct intratumoral injection of an adenovirus expressing interleukin-12 induces regression and long-lasting immunity that is associated with highly localized expression of interleukin-12. Hum Gene Ther 1996; 7: 1995–2002.

    Article  CAS  PubMed  Google Scholar 

  27. Timme TL, Hall SJ, Barrios R, Woo SL, Aguilar-Cordova E, Thompson TC . Local inflammatory response and vector spread after direct intraprostatic injection of a recombinant adenovirus containing the herpes simplex virus thymidine kinase gene and ganciclovir therapy in mice. Cancer Gene Ther 1998; 5: 74–82.

    CAS  PubMed  Google Scholar 

  28. Ebara S, Shimura S, Nasu Y, Kaku K, Kumon K, Yang G et al. Gene therapy for prostate cancer: toxicological profile of four HSV-tk transducing adenoviral vectors regulated by different promoters. Prostate Cancer Prostatic Dis 2002; 5: 316–325.

    Article  CAS  PubMed  Google Scholar 

  29. Ayala G, Satoh T, Li R, Shalev M, Gdor Y, Aguilar-Cordova E et al. Biological response determinants in HSV-tk+Ganciclovir gene therapy for prostate cancer. Mol Ther 2006; 13: 716–728.

    Article  CAS  PubMed  Google Scholar 

  30. Saika T, Satoh T, Kusaka N, Ebara S, Mouraviev VB, Timme TL et al. Route of administration influences the antitumor effects of bone marrow-derived dendritic cells engineered to produce interleukin-12 in a metastatic mouse prostate cancer model. Cancer Gene Ther 2004; 11: 317–324.

    Article  CAS  PubMed  Google Scholar 

  31. Satoh T, Saika T, Ebara S, Kusaka N, Timme TL, Yang G et al. Macrophages transduced with an adenoviral vector expressing interleukin 12 suppress tumor growth and metastasis in a preclinical metastatic prostate cancer model. Cancer Res 2003; 63: 7853–7860.

    CAS  PubMed  Google Scholar 

  32. Sangro B, Mazzolini G, Ruiz J, Herraiz M, Quiroga J, Herrero I et al. Phase I trial of intratumoral injection of an adenovirus encoding interleukin-12 for advanced digestive tumors. J Clin Oncol 2004; 22: 1389–1397.

    Article  CAS  PubMed  Google Scholar 

  33. Chhikara M, Huang H, Vlachaki MT, Zhu X, Teh B, Chiu KJ et al. Enhanced therapeutic effect of hsv-tk+gcv gene therapy and ionizing radiation for prostate cancer. Mol Ther 2001; 3: 536–542.

    Article  CAS  PubMed  Google Scholar 

  34. Hall SJ, Sanford MA, Atkinson G, Chen SH . Induction of potent antitumor natural killer cell activity by herpes simplex virus-thymidine kinase and ganciclovir therapy in an orthotopic mouse model of prostate cancer. Cancer Res 1998; 58: 3221–3225.

    CAS  PubMed  Google Scholar 

  35. Zhang S, Zeng G, Kao C, Gardner T, Sweeney C, Yang NS et al. Fas-Fas ligand signaling pathway mediates an interleukin-12-induced rejection of a murine prostate tumor system. Prostate 2002; 53: 69–76.

    Article  CAS  PubMed  Google Scholar 

  36. Lafleur EA, Jia SF, Worth LL, Zhou Z, Owen-Schaub LB, Kleinerman ES . Interleukin (IL)-12 and IL-12 gene transfer up-regulate Fas expression in human osteosarcoma and breast cancer cells. Cancer Res 2001; 61: 4066–4071.

    CAS  PubMed  Google Scholar 

  37. Kufe D, Weichselbaum R . Radiation therapy: activation for gene transcription and the development of genetic radiotherapy-therapeutic strategies in oncology. Cancer Biol Ther 2003; 2: 326–329.

    Article  CAS  PubMed  Google Scholar 

  38. Sheard MA, Vojtesek B, Janakova L, Kovarik J, Zaloudik J . Up-regulation of Fas (CD95) in human p53wild-type cancer cells treated with ionizing radiation. Int J Cancer 1997; 73: 757–762.

    Article  CAS  PubMed  Google Scholar 

  39. Sheard MA, Uldrijan S, Vojtesek B . Role of p53 in regulating constitutive and X-radiation-inducible CD95 expression and function in carcinoma cells. Cancer Res 2003; 63: 7176–7184.

    CAS  PubMed  Google Scholar 

  40. Chakraborty M, Abrams SI, Camphausen K, Liu K, Scott T, Coleman CN et al. Irradiation of tumor cells up-regulates Fas and enhances CTL lytic activity and CTL adoptive immunotherapy. J Immunol 2003; 170: 6338–6347.

    Article  CAS  PubMed  Google Scholar 

  41. Teicher BA, Ara G, Menon K, Schaub RG . In vivo studies with interleukin-12 alone and in combination with monocyte colony-stimulating factor and/or fractionated radiation treatment. Int J Cancer 1996; 65: 80–84.

    Article  CAS  PubMed  Google Scholar 

  42. Teicher BA, Ara G, Buxton D, Leonard J, Schaub RG . Optimal scheduling of interleukin 12 and chemotherapy in the murine MB-49 bladder carcinoma and B16 melanoma. Clin Cancer Res 1997; 3: 1661–1667.

    CAS  PubMed  Google Scholar 

  43. Teicher BA, Ara G, Buxton D, Leonard J, Schaub RG . Optimal scheduling of interleukin-12 and fractionated radiation therapy in the murine Lewis lung carcinoma. Radiat Oncol Investig 1998; 6: 71–80.

    Article  CAS  PubMed  Google Scholar 

  44. Seetharam S, Staba MJ, Schumm LP, Schreiber K, Schreiber H, Kufe DW et al. Enhanced eradication of local and distant tumors by genetically produced interleukin-12 and radiation. Int J Oncol 1999; 15: 769–773.

    CAS  PubMed  Google Scholar 

  45. Lohr F, Hu K, Huang Q, Zhang L, Samulski TV, Dewhirst MW et al. Enhancement of radiotherapy by hyperthermia-regulated gene therapy. Int J Radiat Oncol Biol Phys 2000; 48: 1513–1518.

    Article  CAS  PubMed  Google Scholar 

  46. Lohr F, Hu K, Haroon Z, Samulski TV, Huang Q, Beaty J et al. Combination treatment of murine tumors by adenovirus-mediated local B7/IL12 immunotherapy and radiotherapy. Mol Ther 2000; 2: 195–203.

    Article  CAS  PubMed  Google Scholar 

  47. Thompson TC, Southgate J, Kitchener G, Land H . Multistage carcinogenesis induced by ras and myc oncogenes in a reconstituted organ. Cell 1989; 56: 917–930.

    Article  CAS  PubMed  Google Scholar 

  48. Eastham JA, Chen SH, Sehgal I, Yang G, Timme TL, Hall SJ et al. Prostate cancer gene therapy: herpes simplex virus thymidine kinase gene transduction followed by ganciclovir in mouse and human prostate cancer models. Hum Gene Ther 1996; 7: 515–523.

    Article  CAS  PubMed  Google Scholar 

  49. Timme TL, Goltsov A, Tahir S, Li L, Wang J, Ren C et al. Caveolin-1 is regulated by c-myc and suppresses c-myc-induced apoptosis. Oncogene 2000; 19: 3256–3265.

    Article  CAS  PubMed  Google Scholar 

  50. Ren C, Li L, Yang G, Timme TL, Goltsov A, Ji X et al. RTVP-1, a tumor suppressor inactivated by methylation in prostate cancer. Cancer Res 2004; 64: 969–976.

    Article  CAS  PubMed  Google Scholar 

  51. Vlachaki MT, Chhikara M, Aguilar L, Zhu X, Chiu KJ, Woo S et al. Enhanced therapeutic effect of mutiple injections of HSV-TK+GCV gene therapy in combination with ionizing radiation in a mouse mammary tumor model. Int J Radiat Oncol Biol Phys 2001; 51: 1008–1017.

    Article  CAS  PubMed  Google Scholar 

  52. Janik P, Briand P, Hartmann NR . The effect of estrone-progesterone treatment on cell proliferation kinetics of hormone-dependent GR mouse mammary tumors. Cancer Res 1975; 35: 3698–3704.

    CAS  PubMed  Google Scholar 

  53. Gavrieli Y, Sherman Y, Ben-Sasson SA . Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 1992; 119: 493–501.

    Article  CAS  PubMed  Google Scholar 

  54. Hall SJ, Mutchnik SE, Yang G, Timme TL, Nasu Y, Bangma CH et al. Cooperative therapeutic effects of androgen ablation and adenovirus- mediated herpes simplex virus thymidine kinase gene and ganciclovir therapy in experimental prostate cancer. Cancer Gene Ther 1999; 6: 54–63.

    Article  CAS  PubMed  Google Scholar 

  55. Satoh T, Timme TL, Saika T, Ebara S, Yang G, Wang J et al. Adenoviral vector-mediated mRTVP-1 gene therapy for prostate cancer. Hum Gene Ther 2003; 14: 91–101.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Cancer Institute P50-58204 Specialized Program for Research Excellence (SPORE). Portions of this work were conducted in facilities provided by the Michael E DeBakey VA Medical Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T C Thompson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujita, T., Timme, T., Tabata, K. et al. Cooperative effects of adenoviral vector-mediated interleukin 12 gene therapy with radiotherapy in a preclinical model of metastatic prostate cancer. Gene Ther 14, 227–236 (2007). https://doi.org/10.1038/sj.gt.3302788

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302788

Keywords

This article is cited by

Search

Quick links