Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

EIAV vector-mediated delivery of endostatin or angiostatin inhibits angiogenesis and vascular hyperpermeability in experimental CNV

Abstract

We evaluated the efficacy of equine infectious anaemia virus (EIAV)-based lentiviral vectors encoding endostatin (EIAV.endostatin) or angiostatin (EIAV.angiostatin) in inhibiting angiogenesis and vascular hyperpermeability in the laser-induced model of choroidal neovascularisation (CNV). Equine infectious anaemia virus.endostatin, EIAV.angiostatin or control (EIAV.null) vectors were administered into the subretinal space of C57Bl/6J mice. Two weeks after laser injury CNV areas and the degree of vascular hyperpermeability were measured by image analysis of in vivo fluorescein angiograms. Compared with EIAV.null-injected eyes, EIAV.endostatin resulted in a 59.5% (P<0.001) reduction in CNV area and a reduction in hyperpermeability of 25.6% (P<0.05). Equine infectious anaemia virus.angiostatin resulted in a 50.0% (P<0.05) reduction in CNV area and a 23.9% (P<0.05) reduction in hyperpermeability. Equine infectious anaemia virus.endostatin, but not EIAV.angiostatin significantly augmented the frequency of apoptosis within the induced CNV as compared with injected controls. TdT-dUTP terminal nick end labeling analysis 5 weeks post-injection, and histological and retinal flatmount analysis 12 months post-injection revealed no evidence of vector- or transgene expression-related deleterious effects on neurosensory retinal cells, or mature retinal vasculature in non-lasered eyes. Highly expressing EIAV-based vectors encoding endostatin or angiostatin effectively control angiogenesis and hyperpermeability in experimental CNV without long-term deleterious effects, supporting the use of such a strategy in the management of patients with exudative age-related macular degeneration.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Macular Photocoagulation Study Group. Argon laser photocoagulation for neovascular maculopathy. Five-year results from randomized clinical trials. Arch Ophthalmol 1991; 109: 1109–1114.

  2. Ferris III FL, Fine SL, Hyman L . Age-related macular degeneration and blindness due to neovascular maculopathy. Arch Ophthalmol 1984; 102: 1640–1642.

    Article  Google Scholar 

  3. Guidelines for using verteporfin (Visudyne) in photodynamic therapy for choroidal neovascularization due to age-related macular degeneration and other causes: update. Retina 2005; 25: 119–134.

  4. Lopez PF, Lambert HM, Grossniklaus HE, Sternberg Jr P . Well-defined subfoveal choroidal neovascular membranes in age-related macular degeneration. Ophthalmology 1993; 100: 415–422.

    Article  CAS  Google Scholar 

  5. Moisseiev J, Alhalel A, Masuri R, Treister G . The impact of the macular photocoagulation study results on the treatment of exudative age-related macular degeneration. Arch Ophthalmol 1995; 113: 185–189.

    Article  CAS  Google Scholar 

  6. Gragoudas ES, Adamis AP, Cunningham Jr ET, Feinsod M, Guyer DR . Pegaptanib for neovascular age-related macular degeneration. N Engl J Med 2004; 351: 2805–2816.

    Article  CAS  Google Scholar 

  7. Husain D, Kim I, Gauthier D, Lane AM, Tsilimbaris MK, Ezra E et al. Safety and efficacy of intravitreal injection of ranibizumab in combination with verteporfin PDT on experimental choroidal neovascularization in the monkey. Arch Ophthalmol 2005; 123: 509–516.

    Article  Google Scholar 

  8. Chang TS, Tonnu IQ, Globe DR, Fine J . Longitudinal changes in self-reported visual functioning in AMD patients in a randomized controlled Phase I/II trial of lucentisTM (ranizumab; rHuFAB v2). Invest Ophthalmol Visual Sci 2004; 45: E-abstract 3098.

  9. Heier JS, Rosenfeld PJ, Antoszyk AN, Hantsbarger G, Kim R, Shams N . Long-term experience with lucentisTM (Ranibizumab) in patients with neovascular age-related macular degeneration (AMD). Invest Ophthalmol Visual Sci 2005; 46: E-abstract 1393.

  10. Gaudreault J, Fei D, Rusit J, Suboc P, Shiu V . Preclinical pharmacokinetics of ranibizumab (rhuFabV2) after a single intravitreal administration. Invest Ophthalmol Vis Sci 2005; 46: 726–733.

    Article  Google Scholar 

  11. Capone A, Macugen AMD Study Group. Intravitreous pegaptanib sodium (MacugenTM) in patients with age-related macular degeneration (AMD): safety and pharmacokinetics. Invest Ophthalmol Visual Sci 2005; 46: E-abstract 2362.

  12. Bainbridge JW, Stephens C, Parsley K, Demaison C, Halfyard A, Thrasher AJ et al. In vivo gene transfer to the mouse eye using an HIV-based lentiviral vector; efficient long-term transduction of corneal endothelium and retinal pigment epithelium. Gene Therapy 2001; 8: 1665–1668.

    Article  CAS  Google Scholar 

  13. Duisit G, Conrath H, Saleun S, Folliot S, Provost N, Cosset FL et al. Five recombinant simian immunodeficiency virus pseudotypes lead to exclusive transduction of retinal pigmented epithelium in rat. Mol Ther 2002; 6: 446–454.

    Article  CAS  Google Scholar 

  14. Balaggan KS, Binley K, Esapa M, Iqball S, Askham Z, Kan O et al. Stable and efficient intraocular gene transfer using pseudotyped EIAV lentiviral vectors. J Gene Med 2006; 8: 275–285.

    Article  CAS  Google Scholar 

  15. Issel CJ, Coggins L . Equine infectious anemia: current knowledge. J Am Vet Med Assoc 1979; 174: 727–733.

    CAS  PubMed  Google Scholar 

  16. Sellon DC, Fuller FJ, McGuire TC . The immunopathogenesis of equine infectious anemia virus. Virus Res 1994; 32: 111–138.

    Article  CAS  Google Scholar 

  17. O'Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 1994; 79: 315–328.

    Article  CAS  Google Scholar 

  18. O'Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 1997; 88: 277–285.

    Article  CAS  Google Scholar 

  19. Dhanabal M, Ramchandran R, Waterman MJ, Lu H, Knebelmann B, Segal M et al. Endostatin induces endothelial cell apoptosis. J Biol Chem 1999; 274: 11721–11726.

    Article  CAS  Google Scholar 

  20. Karumanchi SA, Jha V, Ramchandran R, Karihaloo A, Tsiokas L, Chan B et al. Cell surface glypicans are low-affinity endostatin receptors. Mol Cell 2001; 7: 811–822.

    Article  CAS  Google Scholar 

  21. Rehn M, Veikkola T, Kukk-Valdre E, Nakamura H, Ilmonen M, Lombardo C et al. Interaction of endostatin with integrins implicated in angiogenesis. Proc Natl Acad Sci USA 2001; 98: 1024–1029.

    Article  CAS  Google Scholar 

  22. Dixelius J, Larsson H, Sasaki T, Holmqvist K, Lu L, Engstrom A et al. Endostatin-induced tyrosine kinase signaling through the Shb adaptor protein regulates endothelial cell apoptosis. Blood 2000; 95: 3403–3411.

    CAS  Google Scholar 

  23. Zhang M, Yang Y, Yan M, Zhang J . Downregulation of vascular endothelial growth factor and integrinbeta(3) by endostatin in a mouse model of retinal neovascularization. Exp Eye Res 2005; 82: 74–80.

    Article  Google Scholar 

  24. Hajitou A, Grignet C, Devy L, Berndt S, Blacher S, Deroanne CF et al. The antitumoral effect of endostatin and angiostatin is associated with a down-regulation of vascular endothelial growth factor expression in tumor cells. FASEB J 2002; 16: 1802–1804.

    Article  CAS  Google Scholar 

  25. Kim YM, Hwang S, Kim YM, Pyun BJ, Kim TY, Lee ST et al. Endostatin blocks vascular endothelial growth factor-mediated signaling via direct interaction with KDR/Flk-1. J Biol Chem 2002; 277: 27872–27879.

    Article  CAS  Google Scholar 

  26. Takahashi K, Saishin Y, Saishin Y, Silva RL, Oshima Y, Oshima S et al. Intraocular expression of endostatin reduces VEGF-induced retinal vascular permeability, neovascularization, and retinal detachment. FASEB J 2003; 17: 896–898.

    Article  CAS  Google Scholar 

  27. Hari D, Beckett MA, Sukhatme VP, Dhanabal M, Nodzenski E, Lu H et al. Angiostatin induces mitotic cell death of proliferating endothelial cells. Mol Cell Biol Res Commun 2000; 3: 277–282.

    Article  CAS  Google Scholar 

  28. Luo J, Lin J, Paranya G, Bischoff J . Angiostatin upregulates E-selectin in proliferating endothelial cells. Biochem Biophys Res Commun 1998; 245: 906–911.

    Article  CAS  Google Scholar 

  29. Lucas R, Holmgren L, Garcia I, Jimenez B, Mandriota SJ, Borlat F et al. Multiple forms of angiostatin induce apoptosis in endothelial cells. Blood 1998; 92: 4730–4741.

    CAS  Google Scholar 

  30. Claesson-Welsh L, Welsh M, Ito N, Anand-Apte B, Soker S, Zetter B et al. Angiostatin induces endothelial cell apoptosis and activation of focal adhesion kinase independently of the integrin-binding motif RGD. Proc Natl Acad Sci USA 1998; 95: 5579–5583.

    Article  CAS  Google Scholar 

  31. Moser TL, Stack MS, Asplin I, Enghild JJ, Hojrup P, Everitt L et al. Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc Natl Acad Sci USA 1999; 96: 2811–2816.

    Article  CAS  Google Scholar 

  32. Stack MS, Gately S, Bafetti LM, Enghild JJ, Soff GA . Angiostatin inhibits endothelial and melanoma cellular invasion by blocking matrix-enhanced plasminogen activation. Biochem J 1999; 340 (Part 1): 77–84.

    Article  CAS  Google Scholar 

  33. Gupta N, Nodzenski E, Khodarev NN, Yu J, Khorasani L, Beckett MA et al. Angiostatin effects on endothelial cells mediated by ceramide and RhoA. EMBO Rep 2001; 2: 536–540.

    Article  CAS  Google Scholar 

  34. Liu J, Razani B, Tang S, Terman BI, Ware JA, Lisanti MP . Angiogenesis activators and inhibitors differentially regulate caveolin-1 expression and caveolae formation in vascular endothelial cells. Angiogenesis inhibitors block vascular endothelial growth factor-induced down-regulation of caveolin-1. J Biol Chem 1999; 274: 15781–15785.

    Article  CAS  Google Scholar 

  35. Redlitz A, Daum G, Sage EH . Angiostatin diminishes activation of the mitogen-activated protein kinases ERK-1 and ERK-2 in human dermal microvascular endothelial cells. J Vasc Res 1999; 36: 28–34.

    Article  CAS  Google Scholar 

  36. Sima J, Zhang SX, Shao C, Fant J, Ma JX . The effect of angiostatin on vascular leakage and VEGF expression in rat retina. FEBS Lett 2004; 564: 19–23.

    Article  CAS  Google Scholar 

  37. Mori K, Ando A, Gehlbach P, Nesbitt D, Takahashi K, Goldsteen D et al. Inhibition of choroidal neovascularization by intravenous injection of adenoviral vectors expressing secretable endostatin. Am J Pathol 2001; 159: 313–320.

    Article  CAS  Google Scholar 

  38. Auricchio A, Behling KC, Maguire AM, O'Connor EM, Bennett J, Wilson JM et al. Inhibition of retinal neovascularization by intraocular viral-mediated delivery of anti-angiogenic agents. Mol Ther 2002; 6: 490–494.

    Article  CAS  Google Scholar 

  39. Lai CC, Wu WC, Chen SL, Xiao X, Tsai TC, Huan SJ et al. Suppression of choroidal neovascularization by adeno-associated virus vector expressing angiostatin. Invest Ophthalmol Vis Sci 2001; 42: 2401–2407.

    CAS  Google Scholar 

  40. Gruter O, Kostic C, Crippa SV, Perez M-TR, Zografos L, Schorderet DF et al. Lentiviral vector-mediated gene transfer in adult mouse photoreceptors is impaired by the presence of a physical barrier. Gene Ther 2005; 12: 942–947.

    Article  CAS  Google Scholar 

  41. Yao XY, Hageman GS, Marmor MF . Retinal adhesiveness is weakened by enzymatic modification of the interphotoreceptor matrix in vivo. Invest Ophthalmol Vis Sci 1990; 31: 2051–2058.

    CAS  Google Scholar 

  42. Mori K, Duh E, Gehlbach P, Ando A, Takahashi K, Pearlman J et al. Pigment epithelium-derived factor inhibits retinal and choroidal neovascularization. J Cell Physiol 2001; 188: 253–263.

    Article  CAS  Google Scholar 

  43. Mori K, Gehlbach P, Yamamoto S, Duh E, Zack DJ, Li Q et al. AAV-mediated gene transfer of pigment epithelium-derived factor inhibits choroidal neovascularization. Invest Ophthalmol Vis Sci 2002; 43: 1994–2000.

    Google Scholar 

  44. Kwak N, Okamoto N, Wood JM, Campochiaro PA . VEGF is major stimulator in model of choroidal neovascularization. Invest Ophthalmol Vis Sci 2000; 41: 3158–3164.

    CAS  Google Scholar 

  45. Shen WY, Yu MJ, Barry CJ, Constable IJ, Rakoczy PE . Expression of cell adhesion molecules and vascular endothelial growth factor in experimental choroidal neovascularisation in the rat. Br J Ophthalmol 1998; 82: 1063–1071.

    Article  CAS  Google Scholar 

  46. Brankin B, Campbell M, Canning P, Gardiner TA, Stitt AW . Endostatin modulates VEGF-mediated barrier dysfunction in the retinal microvascular endothelium. Exp Eye Res 2005; 81: 22–31.

    Article  CAS  Google Scholar 

  47. Dixelius J, Cross M, Matsumoto T, Sasaki T, Timpl R, Claesson-Welsh L . Endostatin regulates endothelial cell adhesion and cytoskeletal organization. Cancer Res 2002; 62: 1944–1947.

    CAS  Google Scholar 

  48. Russ PK, Davidson MK, Hoffman LH, Haselton FR . Partial characterization of the human retinal endothelial cell tight and adherens junction complexes. Invest Ophthalmol Vis Sci 1998; 39: 2479–2485.

    CAS  PubMed  Google Scholar 

  49. Mazarakis ND, Azzouz M, Rohll JB, Ellard FM, Wilkes FJ, Olsen AL et al. Rabies virus glycoprotein pseudotyping of lentiviral vectors enables retrograde axonal transport and access to the nervous system after peripheral delivery. Hum Mol Genet 2001; 10: 2109–2121.

    Article  CAS  Google Scholar 

  50. Mitrophanous K, Yoon S, Rohll J, Patil D, Wilkes F, Kim V et al. Stable gene transfer to the nervous system using a non-primate lentiviral vector. Gene Therapy 1999; 6: 1808–1818.

    Article  CAS  Google Scholar 

  51. Kingsman SM, Mitrophanous K, Olsen JC . Potential oncogene activity of the woodchuck hepatitis post-transcriptional regulatory element (WPRE). Gene Therapy 2005; 12: 3–4.

    Article  CAS  Google Scholar 

  52. Wong LF, Scott Ralph G, Walmsley LE, Bienemann AS, Parham S, Kingsman SM et al. Lentiviral-mediated delivery of Bcl-2 or GDNF protects against excitotoxicity in the rat hippocampus. Mol Ther 2005; 11: 89–95.

    Article  CAS  Google Scholar 

  53. Hobson AH, Donovan M, Humphries MM, Tuohy G, Nally M, Carmody R et al. Apoptotic Photoreceptor Death in the Rhodopsin Knockout Mouse in the Presence and Absence of c-fos. Exp Eye Res 2000; 71: 247–254.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor Sue Kingsman for reviewing this manuscript. We also acknowledge the Special Trustees of Moorfields Eye Hospital, London.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K S Balaggan or R R Ali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balaggan, K., Binley, K., Esapa, M. et al. EIAV vector-mediated delivery of endostatin or angiostatin inhibits angiogenesis and vascular hyperpermeability in experimental CNV. Gene Ther 13, 1153–1165 (2006). https://doi.org/10.1038/sj.gt.3302769

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302769

Keywords

This article is cited by

Search

Quick links