Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Direct adenovirus-mediated IGF-I gene transduction of synovium induces persisting synovial fluid IGF-I ligand elevations

Abstract

Insulin-like growth factor-I (IGF-I) is one of the most influential growth factors in cartilage repair. Maintenance of adequate IGF-I levels after articular repair procedures is complicated by the short biological half-life of IGF-I in vivo. This study investigated the potential for more prolonged IGF-I delivery through direct adenoviral mediated transduction of synovial tissues in the metacarpophalangeal (MCP) joints of horses. The use of a large animal model provided a structurally similar and metabolically relevant corollary to the human knee. The complete IGF-I coding sequence was packaged into an E1–E3 deleted adenovirus-5 vector under cytomegalovirus promoter control (AdIGF-I), and injected at varying total joint doses to the MCP joints of 14 horses. Direct injection of 20 and 50 × 1010 AdIGF-I resulted in significant elevations of IGF-I in synovial fluid for approximately 21 days. Synovial tissue taken from injected joints at day 35 following injection and compared to tissue taken preinjection from the same joints revealed elevated synoviocyte IGF-I mRNA levels for the highest viral dose by in situ hybridization and real-time PCR techniques. AdIGF-I injections did not result in significant lameness, joint effusion or elevated total protein concentrations in the synovial fluid. Mild mononuclear infiltration of white blood cells was evident in histologic sections of the synovium in the second highest adenoviral IGF-I dose of 20 × 1010 particles. Cartilage biopsies taken from all injected joints did not reveal any significant changes in proteoglycan levels nor in histological morphology, which included chondrocyte cloning, architecture, cell type or toluidine blue staining, when compared to control joints. Based on these findings, gene transfer of IGF-I to the synovium of joints can result in significant and persistent elevations of IGF-I ligand in synovial fluid with minimal detrimental effects. Direct IGF-I gene therapy may offer a simple approach in treating patients with acute cartilage injury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Tyler JA . Insulin-like growth factor 1 can decrease degradation and promote synthesis of proteoglycan in cartilage exposed to cytokines. Biochem J 1989; 260: 543–548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nixon AJ, Fortier LA, Williams J, Mohammed HO . Enhanced repair of extensive articular defects by insulin-like growth factor-I laden fibrin composites. J Orthop Res 1999; 7: 475–487.

    Article  Google Scholar 

  3. Guerne PA, Sublet A, Lotz M . Growth factor responsiveness of human articular chondrocytes: distinct profiles in primary chondrocytes, subcultured chondrocytes, and fibroblasts. J Cell Physiol 1994; 158: 476–484.

    Article  CAS  PubMed  Google Scholar 

  4. Rogachefsky RA, Dean DD, Howell DS, Altman RD . Treatment of canine osteoarthritis with insulin-like growth factor-1 (IGF-1) and sodium pentosan polysulfate. Osteo Cart 1993; 1: 105–114.

    Article  CAS  Google Scholar 

  5. Madry H, Padera R, Seidel J, Langer R, Freed LE, Trippel SB et al. Gene transfer of a human insulin-like growth factor I cDNA enhances tissue engineering of cartilage. Hum Gene Ther 2002; 13: 1621–1630.

    Article  CAS  PubMed  Google Scholar 

  6. van Beuningen HM, Arntz OJ, van den Berg WB . Insulin-like growth factor stimulation of articular chondrocyte proteoglycan synthesis. Availability and responses at different ages. Br J Rheumatol 1993; 32: 1037–1043.

    Article  CAS  PubMed  Google Scholar 

  7. Laron Z . Insulin-like growth factor 1 (IGF-1): a growth hormone. Mol Pathol 2001; 54: 311–316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mi Z, Ghivizzani SC, Lechman ER, Jaffurs D, Glorioso JC, Evans CH et al. Adenovirus-mediated gene transfer of insulin-like growth factor 1 stimulates proteoglycan synthesis in rabbit joints. Arthr Rheum 2000; 43: 2563–2570.

    Article  CAS  Google Scholar 

  9. Brower-Toland BD, Saxer RA, Goodrich LR, Mi Z, Robbins PD, Evans CH et al. Direct adenovirus-mediated insulin-like growth factor I gene transfer enhances transplant chondrocyte function. Hum Gene Ther 2001; 12: 117–129.

    Article  CAS  PubMed  Google Scholar 

  10. Fortier LA, Lust G, Mohammed HO, Nixon AJ . Coordinate upregulation of cartilage matrix synthesis in fibrin cultures supplemented with exogenous insulin-like growth factor-I. J Orthop Res 1999; 17: 467–474.

    Article  CAS  PubMed  Google Scholar 

  11. Fortier LA, Balkman CE, Ratcliffe A, Nixon AJ . Insulin-like growth factor-1 gene expression patterns during repair of acute articular cartilage injury. J Orthop Res 2001; 19: 720–728.

    Article  CAS  PubMed  Google Scholar 

  12. Nixon AJ, Brower-Toland BD, Bent SJ, Saxer RA, Wilke MJ, Robbins PD et al. Insulinlike growth factor-I gene therapy applications for cartilage repair. Clin Orthop 2000; Suppl 379: S201–S213.

    Article  Google Scholar 

  13. Fortier LA, Mohammed HO, Lust G, Nixon AJ . Insulin-like growth factor-I enhances cell-based repair of articular cartilage. J Bone Joint Surg Br 2002; 84: 276–288.

    Article  CAS  PubMed  Google Scholar 

  14. Foley RL, Nixon AJ . Insulin-like growth factor-1 peptide elution profiles from fibrin polymers determined by high performance liquid chromatography. Am J Vet Res 1997; 58: 1431–1435.

    CAS  PubMed  Google Scholar 

  15. McIlwraith CW, Nixon AJ . Joint resurfacing: Attempts at repairing articular cartilage defects. In: McIlwraith CW, Trotter GT (eds). Joint Disease in the Horse. WB Saunders: Philadelphia, 1996.

    Google Scholar 

  16. Frisbie DD, Ghivizzani SC, Robbins PD, Evans CH, McIlwraith CW . Treatment of experimental equine osteoarthritis by in vivo delivery of the equine interleukin-1 receptor antagonist gene. Gene Therapy 2002; 9: 12–20.

    Article  CAS  PubMed  Google Scholar 

  17. Bandara G, Mueller GM, Galea-Lauri J, Tindal MH, Georgescu HI, Suchanek MK et al. Intraarticular expression of biologically active interleukin 1-receptor-antagonist protein by ex vivo gene transfer. Proc Natl Acad Sci USA 1993; 90: 10764–10768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Otani K, Nita I, Macaulay W, Georgescu HI, Robbins PD, Evans CH . Suppression of antigen-induced arthritis in rabbits by ex vivo gene therapy. J Immunol 1996; 156: 3558–3562.

    CAS  PubMed  Google Scholar 

  19. Nita I, Ghivizzani SC, Galea-Lauri J, Bandara G, Georgescu HI, Robbins PD et al. Direct gene delivery to synovium. An evaluation of potential vectors in vitro and in vivo. Arthr Rheum 1996; 39: 820–828.

    Article  CAS  Google Scholar 

  20. Gouze JN, Gouze E, Palmer GD, Kaneto H, Ghivizzani SC, Grodzinsky AJ . Adenovirus-mediated gene transfer of glutamine: fructose-6-phosphate amidotransferase antagonizes the effects of interleukin-1beta on rat chondrocytes. Osteo Cart 2004; 12: 217–224.

    Article  Google Scholar 

  21. Roessler BJ, Allen ED, Wilson JM, Hartman JW, Davidson BL . Adenoviral-mediated gene transfer to rabbit synovium in vivo. J Clin Invest 1993; 92: 1085–1092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shuler FD, Georgescu HI, Niyibizi C, Studer RK, Mi Z, Johnstone B et al. Increased matrix synthesis following adenoviral transfer of a transforming growth factor beta1 gene into articular chondrocytes. J Orthop Res 2000; 18: 585–592.

    Article  CAS  PubMed  Google Scholar 

  23. Smith P, Shuler FD, Georgescu HI, Ghivizzani SC, Johnstone B, Niyibizi C et al. Genetic enhancement of matrix synthesis by articular chondrocytes: comparison of different growth factor genes in the presence and absence of interleukin-1. Arthritis Rheum 2000; 43: 1156–1164.

    Article  CAS  PubMed  Google Scholar 

  24. Saxer RA, Bent SJ, Brower-Toland BD, Mi Z, Robbins PD, Evans CH et al. Gene mediated insulin-like growth factor-I delivery to the synovium. J Orthop Res 2001; 19: 759–767.

    Article  CAS  PubMed  Google Scholar 

  25. McIlwraith CW . Animal models for cartilage repair. International Cartilage Repair Society 2002, Transactions of the 4th ICRS Symposium: CD Rom (Abstract).

  26. Dechant JE, Baxter GM, Frisbie DD, Trotter GW, McIlwraith CW . Effects of dosage titration of methylprednisolone acetate and triamcinolone acetonide on interleukin-1-conditioned equine articular cartilage explants in vitro. Equine Vet J 2003; 35: 444–450.

    Article  CAS  PubMed  Google Scholar 

  27. Bragdon B, Bertone AL, Hardy J, Simmons EJ, Weisbrode SE . Use of an isolated joint model to detect early changes induced by intra-articular injection of paclitaxel-impregnated polymeric microspheres. J Invest Surg 2001; 14: 169–182.

    Article  CAS  PubMed  Google Scholar 

  28. Simmons EJ, Bertone AL, Weisbrode SE . Instability-induced osteoarthritis in the metacarpophalangeal joint of horses. Am J Vet Res 1999; 60: 7–13.

    CAS  PubMed  Google Scholar 

  29. Hardy J, Bertone AL, Muir WW . Local hemodynamics, permeability, and oxygen metabolism during acute inflammation of innervated or denervated isolated equine joints. Am J Vet Res 1998; 59: 1307–1316.

    CAS  PubMed  Google Scholar 

  30. Todhunter PG, Kincaid SA, Todhunter RJ, Kammermann JR, Johnstone B, Baird AN et al. Immunohistochemical analysis of an equine model of synovitis-induced arthritis. Am J Vet Res 1996; 57: 1080–1093.

    CAS  PubMed  Google Scholar 

  31. Eviatar T, Kauffman H, Maroudas A . Synthesis of insulin-like growth factor binding protein 3 in vitro in human articular cartilage cultures. Arthr Rheum 2003; 48: 410–417.

    Article  CAS  Google Scholar 

  32. Morales TI, Hunziker EB . Localization of insulin-like growth factor binding protein-2 in chondrocytes of bovine articular cartilage. J Orthop Res 2003; 21: 290–295.

    Article  CAS  PubMed  Google Scholar 

  33. Clemmons DR, Busby Jr WH, Garmong A, Schultz DR, Howell DS, Altman RD et al. Inhibition of insulin-like growth factor binding protein 5 proteolysis in articular cartilage and joint fluid results in enhanced concentrations of insulin-like growth factor 1 and is associated with improved osteoarthritis. Arthr Rheum 2002; 46: 694–703.

    Article  CAS  Google Scholar 

  34. Bhakta NR, Garcia AM, Frank EH, Grodzinsky AJ, Morales TI . The insulin-like growth factors (IGFs) I and II bind to articular cartilage via the IGF-binding proteins. J Biol Chem 2000; 275: 5860–5866.

    Article  CAS  PubMed  Google Scholar 

  35. Burcin MM, Schiedner G, Kochanek S, Tsai SY, O'Malley BW . Adenovirus-mediated regulable target gene expression in vivo. Proc Natl Acad Sci USA 1999; 96: 355–360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Evans CH . Gene therapies for osteoarthritis. Curr Rheumatol Rep 2004; 6: 31–40.

    Article  PubMed  Google Scholar 

  37. Lieberman JR . Orthopaedic gene therapy. Fracture healing and other nongenetic problems of bone. Clin Orthop 2000; Suppl 379: S156–S158.

    Article  Google Scholar 

  38. Robbins PD, Evans CH, Chernajovsky Y . Gene therapy for arthritis. Gene Therapy 2003; 10: 902–911.

    Article  CAS  PubMed  Google Scholar 

  39. Todhunter R, Lust G . Pathophysiology of synovitis: Clinical signs and examination in horses. Comp Contin Ed Pract Vet 1990; 12: 979–992.

    Google Scholar 

  40. McIlwraith CW . General pathobiology of the joint and response to injury. In: McIlwraith CW, Trotter GT (eds). Joint Disease in the Horse. WB Saunders: Philadelphia, 1996, pp 40–70.

    Google Scholar 

  41. Caron JP . Synovial joint biology and pathobiology. In: Auer JA, Stick JA (eds). Equine Surgery, 2nd edn. WB Saunders: Philadelphia, 1999, pp 665–678.

    Google Scholar 

  42. Liu Q, Muruve DA . Molecular basis of the inflammatory response to adenovirus vectors. Gene Therapy 2003; 10: 935–940.

    Article  CAS  PubMed  Google Scholar 

  43. Schaack J, Bennett ML, Colbert JD, Torres AV, Clayton GH, Ornelles D et al. E1A and E1B proteins inhibit inflammation induced by adenovirus. Proc Natl Acad Sci USA 2004; 101: 3124–3129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lesokhin AM, Delgado-Lopez F, Horwitz MS . Inhibition of chemokine expression by adenovirus early region three (E3) genes. J Virol 2002; 76: 8236–8243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Straus SE, Ginsberg HS (ed). The Adenoviruses. Plenum: New York, 1984, pp 451–496.

    Book  Google Scholar 

  46. Harrod KS, Hermiston TW, Trapnell BC, Wold WS, Whitsett JA . Lung-specific expression of adenovirus E3-14.7K in transgenic mice attenuates adenoviral vector-mediated lung inflammation and enhances transgene expression. Hum Gene Ther 1998; 9: 1885–1898.

    Article  CAS  PubMed  Google Scholar 

  47. Wen S, Driscoll RM, Schneider DB, Dichek DA . Inclusion of the E3 region in an adenoviral vector decreases inflammation and neointima formation after arterial gene transfer. Arterioscler Thromb Vasc Biol 2001; 21: 1777–1782.

    Article  CAS  PubMed  Google Scholar 

  48. Erikstrup C, Pedersen LM, Heickendorff L, Ledet T, Rasmussen LM . Production of hyaluronan and chondroitin sulphate proteoglycans from human arterial smooth muscle – the effect of glucose, insulin, IGF-I or growth hormone. Eur J Endocrinol 2001; 145: 193–198.

    Article  CAS  PubMed  Google Scholar 

  49. Kuroda K, Utani A, Hamasaki Y, Shinkai H . Up-regulation of putative hyaluronan synthase mRNA by basic fibroblast growth factor and insulin-like growth factor-1 in human skin fibroblasts. J Dermatol Sci 2001; 26: 156–160.

    Article  CAS  PubMed  Google Scholar 

  50. Pavasant P, Shizari T, Underhill CB . Hyaluronan synthesis by epiphysial chondrocytes is regulated by growth hormone, insulin-like growth factor-1, parathyroid hormone and transforming growth factor-beta 1. Matrix Biol 1996; 15: 423–432.

    Article  CAS  PubMed  Google Scholar 

  51. Neumann E, Judex M, Kullmann F, Grifka J, Robbins PD, Pap T et al. Inhibition of cartilage destruction by double gene transfer of IL-1Ra and IL-10 involves the activin pathway. Gene Therapy 2002; 9: 1508–1519.

    Article  CAS  PubMed  Google Scholar 

  52. Nixon AJ, Brower-Toland BD, Sandell L . Primary nucleotide structure of predominant and alternate splice forms of equine insulin-like growth factor I and their gene expression patterns in tissues. Am J Vet Res 1999; 60: 1234–1241.

    CAS  PubMed  Google Scholar 

  53. Hardy S, Kitamura M, Harris-Stansil T, Dai Y, Phipps ML . Construction of adenovirus vectors through Cre-lox recombination. J Virol 1997; 71: 1842–1849.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ross MW . Movement. In: Ross MW, Dyson SJ. (eds). Diagnosis and Management of Lamenss in the Horse. Saunders: St. Louis, 2003, pp 60–73.

    Chapter  Google Scholar 

  55. Sandell LJ . In situ expression of collagen and proteoglycan genes in notochord and during skeletal development and growth. Microsc Res Tech 1994; 28: 470–482.

    Article  CAS  PubMed  Google Scholar 

  56. Farndale RW, Sayers CA, Barrett AJ . A direct spectrophotometric microassay for sulfated glycosaminoglycans in cartilage cultures. Connect Tissue Res 1982; 9: 247–248.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the Harry M Zweig Foundation. Assistance with animal care was provided by Jessica Ekman and histological processing was performed by MaryLou Miller.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A J Nixon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goodrich, L., Brower-Toland, B., Warnick, L. et al. Direct adenovirus-mediated IGF-I gene transduction of synovium induces persisting synovial fluid IGF-I ligand elevations. Gene Ther 13, 1253–1262 (2006). https://doi.org/10.1038/sj.gt.3302757

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302757

Keywords

This article is cited by

Search

Quick links