Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Towards hematopoietic stem cell-mediated protection against infection with human immunodeficiency virus

Abstract

The failure of pharmacological approaches to cure infection with the human immunodeficiency virus (HIV) has renewed the interest in gene-based therapies. Among the various strategies that are currently explored, the blockade of HIV entry into susceptible T cells and macrophages promises to be the most powerful intervention. For long-term protection of both of these lineages, genetic modification of hematopoietic stem cells (HSCs) would be required. Here, we tested whether HSCs and their progeny can be modified to express therapeutic levels of M87o, a gammaretroviral vector encoding an artificial transmembrane molecule that blocks fusion-mediated uptake of HIV. In serial murine bone marrow transplantations, efficient and multilineage expression of M87o was observed for more than 1 year (range 37–75% of mononuclear cells), without signs of toxicity related to the transmembrane molecule. To allow enrichment of M87o-modified HSCs after transplant, we constructed vectors coexpressing the P140K mutant of O6-methylguanine-DNA-methyltransferase (MGMT-P140K). This clinically relevant selection marker mediates a survival advantage in HSCs if exposed to combinations of methylguanine-methyltransferase (MGMT) inhibitors and alkylating agents. A bicistronic vector mediated sufficient expression of both M87o and MGMT to confer a selective survival advantage in the presence of HIV and alkylating agents, respectively. These data encourage further investigations in large animal models and clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Yang QE . Eradication of HIV in infected patients: some potential approaches. Med Sci Monit 2004; 10: RA155–RA165.

    PubMed  Google Scholar 

  2. Wolkowicz R, Nolan GP . Gene therapy progress and prospects: novel gene therapy approaches for AIDS. Gene Therapy 2005; 12: 467–476.

    Article  CAS  PubMed  Google Scholar 

  3. Strayer DS, Akkina R, Bunnell BA, Dropulic B, Planelles V, Pomerantz RJ et al. Current status of gene therapy strategies to treat HIV/AIDS. Mol Ther 2005; 11: 823–842.

    Article  CAS  PubMed  Google Scholar 

  4. Hacein-Bey-Abina S, Le Deist F, Carlier F, Bouneaud C, Hue C, De Villartay JP et al. Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. New Engl J Med 2002; 346: 1185–1193.

    Article  CAS  PubMed  Google Scholar 

  5. Aiuti A, Slavin S, Aker M, Ficara F, Deola S, Mortellaro A et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 2002; 296: 2410–2413.

    Article  CAS  PubMed  Google Scholar 

  6. Gaspar HB, Parsley KL, Howe S, King D, Gilmour KC, Sinclair J et al. Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet 2004; 364: 2181–2187.

    Article  CAS  PubMed  Google Scholar 

  7. Ott MG, Stein S, Koehl U, Schilz A, Kuhlcke K, Schmidt M et al. Gene therapy for X-linked chronic granulomatous disease. Blood 2004; 104: 120a, abstract 409.

    Google Scholar 

  8. Hildinger M, Dittmar MT, Schult-Dietrich P, Fehse B, Schnierle BS, Thaler S et al. Membrane-anchored peptide inhibits human immunodeficiency virus entry. J Virol 2001; 75: 3038–3042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Martinez MA, Gutierrez A, Armand-Ugon M, Blanco J, Parera M, Gomez J et al. Suppression of chemokine receptor expression by RNA interference allows for inhibition of HIV-1 replication. AIDS 2002; 16: 2385–2390.

    Article  CAS  PubMed  Google Scholar 

  10. Egelhofer M, Brandenburg G, Martinius H, Schult-Dietrich P, Melikyan G, Kunert R et al. Inhibition of HIV-1 entry in cells expressing Gp41-derived peptides. J Virol 2004; 78: 568–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. von Laer D, Hasselmann S, Hasselmann K . Impact of gene-modified T cells on HIV infection dynamics. J Theor Biol 2006; 238: 60–77.

    Article  CAS  PubMed  Google Scholar 

  12. Podsakoff GM, Engel BC, Carbonaro DA, Choi C, Smogorzewska EM, Bauer G et al. Selective survival of peripheral blood lymphocytes in children with HIV-1 following delivery of an anti-HIV gene to bone marrow CD34(+) cells. Mol Ther 2005; 12: 77–86.

    Article  CAS  PubMed  Google Scholar 

  13. Engel BC, Kohn DB . Gene therapy for inborn and acquired immune deficiency disorders. Acta Haematol 2003; 110: 60–70.

    Article  PubMed  Google Scholar 

  14. Kohn DB, Bauer G, Rice CR, Rothschild JC, Carbonaro DA, Valdez P et al. A clinical trial of retroviral-mediated transfer of a rev-responsive element decoy gene into CD34(+) cells from the bone marrow of human immunodeficiency virus-1-infected children. Blood 1999; 94: 368–371.

    CAS  PubMed  Google Scholar 

  15. Bordignon C, Roncarolo MG . Therapeutic applications for hematopoietic stem cell gene transfer. Nat Immunol 2002; 3: 318–321.

    Article  CAS  PubMed  Google Scholar 

  16. Davis BM, Humeau L, Dropulic B . In vivo selection for human and murine hematopoietic cells transduced with a therapeutic MGMT lentiviral vector that inhibits HIV replication. Mol Ther 2004; 9: 160–172.

    Article  CAS  PubMed  Google Scholar 

  17. Baum C, Dullmann J, Li Z, Fehse B, Meyer J, Williams DA et al. Side effects of retroviral gene transfer into hematopoietic stem cells. Blood 2003; 101: 2099–2114.

    Article  CAS  PubMed  Google Scholar 

  18. Li Z, Dullmann J, Schiedlmeier B, Schmidt M, von Kalle C, Meyer J et al. Murine leukemia induced by retroviral gene marking. Science 2002; 296: 497.

    Article  CAS  PubMed  Google Scholar 

  19. Modlich U, Kustikova O, Schmidt M, Rudolph C, Meyer J, Li Z et al. Leukemias following retroviral transfer of multidrug resistance 1 are driven by combinatorial insertional mutagenesis. Blood 2005; 105: 4235–4246.

    Article  CAS  PubMed  Google Scholar 

  20. Kustikova OS, Fehse B, Düllmann J, Kamino K, von Neuhoff N, Schlegelberger B et al. Clonal dominance of hematopoietic stem cells triggered by retroviral gene marking. Science 2005; 308: 1171–1174.

    Article  CAS  PubMed  Google Scholar 

  21. Gerson SL . MGMT: its role in cancer aetiology and cancer therapeutics. Nat Rev Cancer 2004; 4: 296–307.

    Article  CAS  PubMed  Google Scholar 

  22. Ragg S, Xu-Welliver M, Bailey J, D Souza M, Cooper R, Chandra S et al. Direct reversal of DNA damage by mutant methyltransferase protein protects mice against dose-intensified chemotherapy and leads to in vivo selection of hematopoietic stem cells. Cancer Res 2000; 60: 5187–5195.

    CAS  PubMed  Google Scholar 

  23. Jansen M, Sorg UR, Ragg S, Flasshove M, Seeber S, Williams DA et al. Hematoprotection and enrichment of transduced cells in vivo after gene transfer of MGMT(P140K) into hematopoietic stem cells. Cancer Gene Ther 2002; 9: 737–746.

    Article  CAS  PubMed  Google Scholar 

  24. Neff T, Beard BC, Peterson LJ, Anandakumar P, Thompson J, Kiem HP . Polyclonal chemoprotection against temozolomide in a large-animal model of drug resistance gene therapy. Blood 2005; 105: 997–1002.

    Article  CAS  PubMed  Google Scholar 

  25. Neff T, Horn PA, Peterson LJ, Thomasson BM, Thompson J, Williams DA et al. Methylguanine methyltransferase-mediated in vivo selection and chemoprotection of allogeneic stem cells in a large-animal model. J Clin Invest 2003; 112: 1581–1588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zielske SP, Reese JS, Lingas KT, Donze JR, Gerson SL . In vivo selection of MGMT(P140K) lentivirus-transduced human NOD/SCID repopulating cells without pretransplant irradiation conditioning. J Clin Invest 2003; 112: 1561–1570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pollok KE, Hartwell JR, Braber A, Cooper RJ, Jansen M, Ragg S et al. In vivo selection of human hematopoietic cells in a xenograft model using combined pharmacologic and genetic manipulations. Hum Gene Ther 2003; 14: 1703–1714.

    Article  CAS  PubMed  Google Scholar 

  28. Hildinger M, Abel KL, Ostertag W, Baum C . Design of 5′ untranslated sequences in retroviral vectors developed for medical use. J Virol 1999; 73: 4083–4089.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Schambach A, Wodrich H, Hildinger M, Bohne J, Krausslich HG, Baum C . Context dependence of different modules for posttranscriptional enhancement of gene expression from retroviral vectors. Mol Ther 2000; 2: 435–445.

    Article  CAS  PubMed  Google Scholar 

  30. Kinsella TM, Nolan GP . Episomal vectors rapidly and stably produce high-titer recombinant retrovirus. Hum Gene Ther 1996; 7: 1405–1413.

    Article  CAS  PubMed  Google Scholar 

  31. Fehse B, Kustikova OS, Bubenheim M, Baum C . Pois(s)on – it's a question of dose? Gene Therapy 2004; 11: 879–881.

    Article  CAS  PubMed  Google Scholar 

  32. Kustikova OS, Wahlers A, Kuehlcke K, Staehle B, Zander AR, Baum C et al. Dose finding with retroviral vectors: correlation of retroviral vector copy numbers in single cells with gene transfer efficiency in a cell population. Blood 2003; 102: 3934–3937.

    Article  CAS  PubMed  Google Scholar 

  33. Hildinger M, Schilz A, Eckert HG, Bohn W, Fehse B, Zander A et al. Bicistronic retroviral vectors for combining myeloprotection with cell-surface marking. Gene Therapy 1999; 6: 1222–1230.

    Article  CAS  PubMed  Google Scholar 

  34. Qin S, Ward M, Raftopoulos H, Tang H, Bradley B, Hesdorffer C et al. Competitive repopulation of retrovirally transduced haemopoietic stem cells. Br J Haematol 1999; 107: 162–168.

    Article  CAS  PubMed  Google Scholar 

  35. Traggiai E, Chicha L, Mazzucchelli L, Bronz L, Piffaretti J-C, Lanzavecchia A et al. Development of a human adaptive immune system in cord blood cell transplanted mice. Science 2004; 304: 104–107.

    Article  CAS  PubMed  Google Scholar 

  36. Haigwood NL . Predictive value of primate models for AIDS. AIDS Rev 2004; 6: 187–198.

    PubMed  Google Scholar 

  37. Zielske SP, Gerson SL . Limited lentiviral transgene expression with increasing copy number in an MGMT selection model: lack of copy number selection by drug treatment. Mol Ther 2004; 9: 923–931.

    Article  CAS  PubMed  Google Scholar 

  38. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302: 415–419.

    Article  CAS  PubMed  Google Scholar 

  39. Williams DA, Baum C . Medicine. Gene therapy – new challenges ahead. Science 2003; 302: 400–401.

    Article  CAS  PubMed  Google Scholar 

  40. Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D et al. A third-generation lentivirus vector with a conditional packaging system. J Virol 1998; 72: 8463–8471.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Follenzi A, Ailles LE, Bakovic S, Geuna M, Naldini L . Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat Genet 2000; 25: 217–222.

    Article  CAS  PubMed  Google Scholar 

  42. Leurs C, Jansen M, Pollok KE, Heinkelein M, Schmidt M, Wissler M et al. Comparison of three retroviral vector systems for transduction of nonobese diabetic/severe combined immunodeficiency mice repopulating human CD34+ cord blood cells. Hum Gene Ther 2003; 14: 509–519.

    Article  CAS  PubMed  Google Scholar 

  43. Vassilopoulos G, Trobridge G, Josephson NC, Russell DW . Gene transfer into murine hematopoietic stem cells with helper-free foamy virus vectors. Blood 2001; 98: 604–609.

    Article  CAS  PubMed  Google Scholar 

  44. Yu SF, von Ruden T, Kantoff PW, Garber C, Seiberg M, Ruther U et al. Self-inactivating retroviral vectors designed for transfer of whole genes into mammalian cells. Proc Natl Acad Sci USA 1986; 83: 3194–3198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kraunus J, Schaumann DHS, Meyer J, Modlich U, Fehse B, Brandenburg G et al. Self-inactivating retroviral vectors with improved RNA processing. Gene Therapy 2004; 11: 1568–1578.

    Article  CAS  PubMed  Google Scholar 

  46. Schambach A, Bohne J, Chandra S, Will E, Margison GP, Williams DA et al. Equal potency of gammaretroviral and lentiviral SIN vectors for expression of O6-methylguanine-DNA-methyltransferase in bone marrow cells. Mol Ther 2006; 13: 391–400.

    Article  CAS  PubMed  Google Scholar 

  47. Morita S, Kojima T, Kitamura T . Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Therapy 2000; 7: 1063–1070.

    Article  CAS  PubMed  Google Scholar 

  48. Lee B, Sharron M, Montaner LJ, Weissman D, Doms RW . Quantification of CD4, CCR5, and CXCR4 levels on lymphocyte subsets, dendritic cells and differentially conditioned monocyte-derived macrophages. Proc Natl Acad Sci USA 1999; 96: 5215–5220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Muster T, Steindl F, Purtscher M, Trkola A, Klima A, Himmler G et al. A conserved neutralizing epitope on gp41 of human immunodeficiency virus type 1. J Virol 1993; 67: 6642–6647.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. He J, Chen Y, Farzan M, Choe H, Ohagen A, Gartner S et al. CCR3 and CCR5 are co-receptors for HIV-1 infection of microglia. Nature 1997; 385: 645–649.

    Article  CAS  PubMed  Google Scholar 

  51. Choe H, Farzan M, Sun Y, Sullivan N, Rollins B, Ponath PD et al. The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 1996; 85: 1135–1148.

    Article  CAS  PubMed  Google Scholar 

  52. Li Z, Schwieger M, Lange C, Kraunus J, Sun H, van den Akker E et al. Predictable and efficient retroviral gene transfer into murine bone marrow repopulating cells using a defined vector dose. Exp Hematol 2003; 31: 1206–1214.

    Article  CAS  PubMed  Google Scholar 

  53. Watson AJ, Margison GP . O6-alkylguanine-DNA alkyltransferase assay. Methods Mol Biol 2000; 152: 49–61.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants of the European Union (MCFI-2001-51101) and Vision7 GmbH. Work at the Paterson Institute was supported by Cancer Research-UK. We are grateful to Cornelia Rudolph for assistance with fluorescence microscopy, and to Norbert Dinauer for summarizing data of the M87o bone marrow transplantation study. We thank Maimona Id and Sabine Knöß for technical assistance. The monoclonal antibody 2F5 was kindly provided by H Katinger, Vienna. Felix Hermann was supported by the European Commission project TRIoH LSHG-CT-2003-503480.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D von Laer or C Baum.

Additional information

Supplementary Information accompanies the paper on the Gene Therapy website (http://www.nature.com/gt).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schambach, A., Schiedlmeier, B., Kühlcke, K. et al. Towards hematopoietic stem cell-mediated protection against infection with human immunodeficiency virus. Gene Ther 13, 1037–1047 (2006). https://doi.org/10.1038/sj.gt.3302755

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302755

Keywords

This article is cited by

Search

Quick links