Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Gene therapy of ovarian cancer with IFN-α-producing fibroblasts: comparison of constitutive and inducible vectors

Abstract

Ovarian cancer represents a malignancy suitable for cell and gene therapy approaches owing to its containment within the peritoneal cavity, even at advanced tumor stages. As regulation of transgene expression would be preferable for conducting clinical trials for reasons of safety, we investigated whether intraperitoneal (i.p.) administration of retroviral vector-transduced fibroblasts encoding murine interferon-α (IFN-α) could have therapeutic activity, and compared its effect with the antitumor effects of fibroblasts producing IFN-α under a rapamycin analogue (AP21967)-inducible promoter. Human and murine fibroblasts were recruited into the solid component of transplantable ovarian cancer-grown i.p. in severe combined immunodeficiency mice. Multiple administrations of fibroblasts producing IFN-α in a constitutive manner showed therapeutic efficacy, leading to significant prolongation of survival in the majority of animals, associated with inhibition of tumor angiogenesis. Compared to cells transduced by the constitutive vector, fibroblasts transduced by the inducible vector released twofold higher IFN-α levels in vitro, following induction by AP21967, and production of the cytokine was under pharmacologic control both in vitro and in vivo. However, these cells elicited only modest therapeutic effects in vivo. Overall, these findings indicate that intracavitary IFN-α gene therapy using engineered fibroblasts requires sustained production of IFN-α to achieve durable antitumor effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Pisani P, Parkin DM, Bray F, Ferlay J . Estimates of the worldwide mortality from 25 cancers in 1990. Int J Cancer 1999; 83: 18–29.

    Article  CAS  PubMed  Google Scholar 

  2. Kirby TO, Curiel DT, Alvarez RD . Gene therapy for ovarian cancer: progress and potential. Hematol Oncol Clin N Am 2003; 17: 1021–1050.

    Article  Google Scholar 

  3. Zeimet AG, Marth C . Why did p53 gene therapy fail in ovarian cancer? Lancet Oncol 2003; 4: 415–422.

    Article  CAS  PubMed  Google Scholar 

  4. Roni V, Habeler W, Parenti A, Indraccolo S, Gola E, Tosello V et al. Recruitment of human umbilical vein endothelial cells and human primary fibroblasts into experimental tumors growing in SCID mice. Exp Cell Res 2003; 287: 28–38.

    Article  CAS  PubMed  Google Scholar 

  5. Sanches R, Kuiper M, Penault-Llorca F, Aunoble B, D'Incan C, Bignon YJ . Antitumoral effect of interleukin-12-secreting fibroblasts in a mouse model of ovarian cancer: implications for the use of ovarian cancer biopsy-derived fibroblasts as a vehicle for regional gene therapy. Cancer Gene Ther 2000; 7: 707–720.

    Article  CAS  PubMed  Google Scholar 

  6. Albini A, Marchisone C, Del Grosso F, Benelli R, Masiello L, Tacchetti C et al. Inhibition of angiogenesis and vascular tumor growth by interferon-producing cells: a gene therapy approach. Am J Pathol 2000; 156: 1381–1393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Indraccolo S, Gola E, Rosato A, Minuzzo S, Habeler W, Tisato V et al. Differential effects of angiostatin, endostatin and interferon-alpha(1) gene transfer on in vivo growth of human breast cancer cells. Gene Therapy 2002; 9: 867–878.

    Article  CAS  PubMed  Google Scholar 

  8. De Bouard S, Guillamo JS, Christov C, Lefevre N, Brugieres P, Gola E et al. Antiangiogenic therapy against experimental glioblastoma using genetically engineered cells producing interferon-alpha, angiostatin, or endostatin. Hum Gene Ther 2003; 14: 883–895.

    Article  PubMed  Google Scholar 

  9. Tuting T, Gambotto A, Baar J, Davis ID, Storkus WJ, Zavodny PJ et al. Interferon-alpha gene therapy for cancer: retroviral transduction of fibroblasts and particle-mediated transfection of tumor cells are both effective strategies for gene delivery in murine tumor models. Gene Therapy 1997; 4: 1053–1060.

    Article  CAS  PubMed  Google Scholar 

  10. Tahara H, Zeh III HJ, Storkus WJ, Pappo I, Watkins SC, Gubler U et al. Fibroblasts genetically engineered to secrete interleukin 12 can suppress tumor growth and induce antitumor immunity to a murine melanoma in vivo. Cancer Res 1994; 54: 182–189.

    CAS  PubMed  Google Scholar 

  11. Tahara H, Lotze MT, Robbins PD, Storkus WJ, Zitvogel L . IL-12 gene therapy using direct injection of tumors with genetically engineered autologous fibroblasts. Hum Gene Ther 1995; 6: 1607–1624.

    Article  CAS  PubMed  Google Scholar 

  12. Shawler DL, Dorigo O, Gjerset RA, Royston I, Sobol RE, Fakhrai H . Comparison of gene therapy with interleukin-2 gene modified fibroblasts and tumor cells in the murine CT-26 model of colorectal carcinoma. J Immunother Emphasis Tumor Immunol 1995; 17: 201–208.

    Article  CAS  PubMed  Google Scholar 

  13. Zitvogel L, Tahara H, Robbins PD, Storkus WJ, Clarke MR, Nalesnik MA et al. Cancer immunotherapy of established tumors with IL-12. Effective delivery by genetically engineered fibroblasts. J Immunol 1995; 155: 1393–1403.

    CAS  PubMed  Google Scholar 

  14. Lotze MT, Rubin JT, Carty S, Edington H, Ferson P, Landreneau R et al. Gene therapy of cancer: a pilot study of IL-4-gene-modified fibroblasts admixed with autologous tumor to elicit an immune response. Hum Gene Ther 1994; 5: 41–55.

    Article  CAS  PubMed  Google Scholar 

  15. Belardelli F, Ferrantini M, Proietti E, Kirkwood JM . Interferon-alpha in tumor immunity and immunotherapy. Cytokine Growth Factor Rev 2002; 13: 119–134.

    Article  CAS  PubMed  Google Scholar 

  16. Tough DF, Borrow P, Sprent J . Induction of bystander T cell proliferation by viruses and type I interferon in vivo. Science 1996; 272: 1947–1950.

    Article  CAS  PubMed  Google Scholar 

  17. Pollock R, Issner R, Zoller K, Natesan S, Rivera VM, Clackson T . Delivery of a stringent dimerizer-regulated gene expression system in a single retroviral vector. Proc Natl Acad Sci USA 2000; 97: 13221–13226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bjornsti MA, Houghton PJ . The TOR pathway: a target for cancer therapy. Nat Rev Cancer 2004; 4: 335–348.

    Article  CAS  PubMed  Google Scholar 

  19. Guba M, von Breitenbuch P, Steinbauer M, Koehl G, Flegel S, Hornung M et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med 2002; 8: 128–135.

    Article  CAS  PubMed  Google Scholar 

  20. Marie I, Durbin JE, Levy DE . Differential viral induction of distinct interferon-alpha genes by positive feedback through interferon regulatory factor-7. EMBO J 1998; 17: 6660–6669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Roth DA, Tawa Jr NE, O'Brien JM, Treco DA, Selden RF . Nonviral transfer of the gene encoding coagulation factor VIII in patients with severe hemophilia A. N Engl J Med 2001; 344: 1735–1742.

    Article  CAS  PubMed  Google Scholar 

  22. Kang WK, Park C, Yoon HL, Kim WS, Yoon SS, Lee MH et al. Interleukin 12 gene therapy of cancer by peritumoral injection of transduced autologous fibroblasts: outcome of a phase I study. Hum Gene Ther 2001; 12: 671–684.

    Article  CAS  PubMed  Google Scholar 

  23. Qin XQ, Tao N, Dergay A, Moy P, Fawell S, Davis A et al. Interferon-beta gene therapy inhibits tumor formation and causes regression of established tumors in immune-deficient mice. Proc Natl Acad Sci USA 1998; 95: 14411–14416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ye X, Rivera VM, Zoltick P, Cerasoli Jr F, Schnell MA, Gao G et al. Regulated delivery of therapeutic proteins after in vivo somatic cell gene transfer. Science 1999; 283: 88–91.

    Article  CAS  PubMed  Google Scholar 

  25. Rowinsky EK . Targeting the molecular target of rapamycin (mTOR). Curr Opin Oncol 2004; 16: 564–575.

    Article  CAS  PubMed  Google Scholar 

  26. Rivera VM, Ye X, Courage NL, Sachar J, Cerasoli Jr F, Wilson JM et al. Long-term regulated expression of growth hormone in mice after intramuscular gene transfer. Proc Natl Acad Sci USA 1999; 96: 8657–8662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dutcher JP . Mammalian target of rapamycin inhibition. Clin Cancer Res 2004; 10: 6382S–6387S.

    Article  CAS  PubMed  Google Scholar 

  28. Guba M, Yezhelyev M, Eichhorn ME, Schmid G, Ischenko I, Papyan A et al. Rapamycin induces tumor-specific thrombosis via tissue factor in the presence of VEGF. Blood 2005; 105: 4463–4469.

    Article  CAS  PubMed  Google Scholar 

  29. Dvorak HF, Gresser I . Microvascular injury in pathogenesis of interferon-induced necrosis of subcutaneous tumors in mice. J Natl Cancer Inst 1989; 81: 497–502.

    Article  CAS  PubMed  Google Scholar 

  30. Rozera C, Carlei D, Lollini PL, De Giovanni C, Musiani P, Di Carlo E et al. Interferon (IFN)-beta gene transfer into TS/A adenocarcinoma cells and comparison with IFN-alpha: differential effects on tumorigenicity and host response. Am J Pathol 1999; 154: 1211–1222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Klein D, Indraccolo S, von Rombs K, Amadori A, Salmons B, Gunzburg WH . Rapid identification of viable retrovirus-transduced cells using the green fluorescent protein as a marker. Gene Therapy 1997; 4: 1256–1260.

    Article  CAS  PubMed  Google Scholar 

  32. Indraccolo S, Habeler W, Tisato V, Stievano L, Piovan E, Tosello V et al. Gene transfer in ovarian cancer cells: a comparison between retroviral and lentiviral vectors. Cancer Res 2002; 62: 6099–6107.

    CAS  PubMed  Google Scholar 

  33. Lacerda JF, Ladanyi M, Jagiello C, O'Reilly RJ . Administration of rabbit anti-asialo GM1 antiserum facilitates the development of human Epstein–Barr virus-induced lymphoproliferations in xenografted C.B-17 scid/scid mice. Transplantation 1996; 61: 492–497.

    Article  CAS  PubMed  Google Scholar 

  34. Indraccolo S, Minuzzo S, Roccaforte F, Zamarchi R, Habeler W, Stievano L et al. Effects of CD2 locus control region sequences on gene expression by retroviral and lentiviral vectors. Blood 2001; 98: 3607–3617.

    Article  CAS  PubMed  Google Scholar 

  35. De Giovanni C, Palmieri G, Nicoletti G, Landuzzi L, Scotlandi K, Bontadini A et al. Immunological and non-immunological influence of H-2Kb gene transfection on the metastatic ability of B16 melanoma cells. Int J Cancer 1991; 48: 270–276.

    Article  CAS  PubMed  Google Scholar 

  36. Indraccolo S, Morini M, Gola E, Carrozzino F, Habeler W, Minghelli S et al. Effects of angiostatin gene transfer on functional properties and in vivo growth of Kaposi's sarcoma cells. Cancer Res 2001; 61: 5441–5446.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mrs A Azzalini and P Gallo for artwork and Dr Erich Piovan for help in preparing the manuscript. We thank ARIAD Pharmaceuticals Inc. (Cambridge, MA, USA) for providing us with the Argent Regulated Transcription Retrovirus Kit and with AP21967. This work was supported in part by grants from MIUR 40 and 60%, FIRB, the Italian Association for Cancer Research (AIRC), the Ministero della Salute (Ricerca Finalizzata 2002), the Italian Foundation for Cancer Research (FIRC), and the Fondazione Cassa di Risparmio di Padova e Rovigo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Indraccolo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Indraccolo, S., Moserle, L., Tisato, V. et al. Gene therapy of ovarian cancer with IFN-α-producing fibroblasts: comparison of constitutive and inducible vectors. Gene Ther 13, 953–965 (2006). https://doi.org/10.1038/sj.gt.3302745

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302745

Keywords

This article is cited by

Search

Quick links