Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Electroporative α-MSH gene transfer attenuates thioacetamide-induced murine hepatic fibrosis by MMP and TIMP modulation

Abstract

Hepatic fibrosis represents a process of healing and scarring in response to chronic liver injury. α-Melanocyte-stimulating hormone (α-MSH) is a 13-amino-acid peptide with potent anti-inflammatory effects. We have previously demonstrated that α-MSH gene therapy protects against thioacetamide (TAA)-induced acute liver failure. Therefore, the aim of this study is to investigate whether α-MSH gene therapy possesses antihepatic fibrogenic effect. Liver fibrosis was induced by long-term TAA administration in mice. α-Melanocyte-stimulating hormone expression plasmid was delivered via electroporation after liver fibrosis was established. Our results showed that α-MSH gene therapy attenuated liver fibrosis in TAA-treated mice. Reverse transcription polymerase chain reaction revealed that α-MSH gene therapy attenuated the liver transforming growth factor-β1, collagen α1 and cell adhesion molecule mRNA upregulation. Following gene transfer, the expression of α-smooth muscle actin and cyclooxygenase-2 were both significantly attenuated. Further, α-MSH significantly increased matrix metalloproteinase (MMP), while tissue inhibitors of matrix metalloproteinase (TIMPs) were inactivated. In summary, α-MSH gene therapy reversed established liver fibrosis in mice and prevented the upregulated fibrogenic and pro-inflammatory gene responses after TAA administration. Its collagenolytic effect might be attributed to MMP and TIMP modulation. Hence, α-MSH gene therapy may be an effective therapeutic modality against liver fibrosis with potential clinical use.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Wang CH, Chen YJ, Lee TH, Chen YS, Jawan B, Hung KS et al. Protective effect of MDL28170 against thioacetamide-induced acute liver failure in mice. J Biomed Sci 2004; 11: 571–578.

    Article  CAS  Google Scholar 

  2. Wang CH, Jawan B, Lee TH, Hung KS, Chou WY, Lu CN et al. Single injection of naked plasmid encoding α-melanocyte-stimulating hormone protects against thioacetamide-induced acute liver failure in mice. Biochem Biophys Res Commun 2004; 322: 153–161.

    Article  CAS  Google Scholar 

  3. Hung KS, Lee TH, Chou WY, Wu CL, Cho CL, Lu CN et al. Interleukin-10 gene therapy reverses thioacetamide-induced liver fibrosis in mice. Biochem Biophys Res Commun 2005; 336: 324–331.

    Article  CAS  Google Scholar 

  4. Chieli E, Malvaldi G . Role of the microsomal FAD-containing monooxygenase in the liver toxicity of thioacetamide S-oxide. Toxicology 1984; 31: 41–52.

    Article  CAS  Google Scholar 

  5. Hunter AL, Holscher MA, Neal RA . Thioacetamide-induced hepatic necrosis. I. Involvement of the mixed-function oxidase enzyme system. J Pharmacol Exp Ther 1977; 200: 439–448.

    CAS  PubMed  Google Scholar 

  6. Porter WR, Gudzinowicz MJ, Neal RA . Thioacetamide-induced hepatic necrosis. II. Pharmacokinetics of thioacetamide and thioacetamide-S-oxide in the rat. J Pharmacol Exp Ther 1979; 208: 386–391.

    CAS  PubMed  Google Scholar 

  7. Jang MH, Jung SB, Lee MH, Kim CJ, Oh YT, Kang I et al. Melatonin inhibits nuclear factor κB activation and oxidative stress and protects against thioacetamide induced liver damage in rats. J Hepatol 2004; 40: 86–93.

    Google Scholar 

  8. Tunez I, Munoz MC, Villavicencio MA, Medina FJ, de Prado EP, Espejo I et al. Hepato- and neurotoxicity induced by thioacetamide: protective effects of melatonin and dimethylsulfoxide. Pharmacol Res 2005; 52: 223–228.

    Article  CAS  Google Scholar 

  9. Poli G . Pathogenesis of liver fibrosis: role of oxidative stress. Mol Aspects Med 2000; 21: 49–98.

    Article  CAS  Google Scholar 

  10. Reeves HL, Friedman SL . Activation of hepatic stellate cells – a key issue in liver fibrosis. Front Biosci 2002; 7: D808–D826.

    Article  CAS  Google Scholar 

  11. Schuppan D, Ruehl M, Somasundaram R, Hahn EG . Matrix as a modulator of hepatic fibrogenesis. Semin Liver Dis 2001; 21: 351–372.

    Article  CAS  Google Scholar 

  12. Desmet VJ, Roskams T . Cirrhosis reversal: a duel between dogma and myth. J Hepatol 2004; 40: 860–867.

    Article  Google Scholar 

  13. Gressner AM, Weiskirchen R, Breitkopf K, Dooley S . Roles of TGF-β in hepatic fibrosis. Front Biosci 2002; 7: D793–D807.

    Article  CAS  Google Scholar 

  14. Tilg H, Wilmer A, Vogel W, Herold M, Nolchen B, Judmaier G et al. Serum levels of cytokines in chronic liver diseases. Gastroenterology 1992; 103: 264–274.

    Article  CAS  Google Scholar 

  15. Catania A, Airaghi L, Colombo G, Lipton JM . α-Melanocyte-stimulating hormone in normal human physiology and disease states. Trends Endocrinol Metab 2000; 11: 304–308.

    Article  CAS  Google Scholar 

  16. Luger TA, Scholzen TE, Brzoska T, Bohm M . α-New insights into the functions of α-MSH and related peptides in the immune system. Ann NY Acad Sci 2003; 994: 133–140.

    Article  CAS  Google Scholar 

  17. Chiao H, Foster S, Thomas R, Lipton J, Star RA . α-Melanocyte-stimulating hormone reduces endotoxin-induced liver inflammation. J Clin Invest 1996; 97: 2038–2044.

    Article  CAS  Google Scholar 

  18. Bohm M, Raghunath M, Sunderkotter C, Schiller M, Stander S, Brzoska T et al. Collagen metabolism is a novel target of the neuropeptide α-melanocyte-stimulating hormone. J Biol Chem 2004; 279: 6959–6966.

    Article  Google Scholar 

  19. Colombo G, Gatti S, Turcatti F, Sordi A, Fassati LR, Bonino F et al. Gene expression profiling reveals multiple protective influences of the peptide α-melanocyte-stimulating hormone in experimental heart transplantation. J Immunol 2005; 175: 3391–3401.

    Article  CAS  Google Scholar 

  20. Lee SY, Jo SK, Cho WY, Kim HK, Won NH . The effect of α-melanocyte-stimulating hormone on renal tubular cell apoptosis and tubulointerstitial fibrosis in cyclosporine A nephrotoxicity. Transplantation 2004; 78: 1756–1764.

    Article  CAS  Google Scholar 

  21. Kiss M, Wlaschek M, Brenneisen P, Michel G, Hommel C, Lange TS et al. α-Melanocyte-stimulating hormone induces collagenase/matrix metalloproteinase-1 in human dermal fibroblasts. Biol Chem Hoppe Seyler 1995; 376: 425–430.

    Article  CAS  Google Scholar 

  22. Lei TC, Vieira WD, Hearing VJ . In vitro migration of melanoblasts requires matrix metalloproteinase-2: implications to vitiligo therapy by photochemotherapy. Pigment Cell Res 2002; 15: 426–432.

    Article  CAS  Google Scholar 

  23. Wilson JF, Harry FM . Release, distribution and half-life of α-melanotrophin in the rat. J Endocrinol 1980; 86: 61–67.

    Article  CAS  Google Scholar 

  24. Schnur J, Olah J, Szepesi A, Nagy P, Thorgeirsson SS . Thioacetamide-induced hepatic fibrosis in transforming growth factor β-1 transgenic mice. Eur J Gastroenterol Hepatol 2004; 16: 127–133.

    Article  CAS  Google Scholar 

  25. Rothuizen J, Biewenga WJ, Mol JA . Chronic glucocorticoid excess and impaired osmoregulation of vasopressin release in dogs with hepatic encephalopathy. Domest Anim Endocrinol 1995; 12: 13–24.

    Article  CAS  Google Scholar 

  26. Claria J . Cyclooxygenase-2 biology. Curr Pharm Des 2003; 9: 2177–2190.

    Article  CAS  Google Scholar 

  27. Yamamoto H, Kondo M, Nakamori S, Nagano H, Wakasa K, Sugita Y et al. JTE-522, a cyclooxygenase-2 inhibitor, is an effective chemopreventive agent against rat experimental liver fibrosis. Gastroenterology 2003; 125: 556–571.

    Article  CAS  Google Scholar 

  28. Mohammed NA, Abd El-Aleem SA, El-Hafiz HA, McMahon RF . Distribution of constitutive (COX-1) and inducible (COX-2) cyclooxygenase in postviral human liver cirrhosis: a possible role for COX-2 in the pathogenesis of liver cirrhosis. J Clin Pathol 2004; 57: 350–354.

    Article  CAS  Google Scholar 

  29. Sung YK, Hwang SY, Kim JO, Bae HI, Kim JC, Kim MK . The correlation between cyclooxygenase-2 expression and hepatocellular carcinogenesis. Mol Cells 2004; 17: 35–38.

    CAS  PubMed  Google Scholar 

  30. Bae SH, Jung ES, Park YM, Kim BS, Kim BK, Kim DG et al. Expression of cyclooxygenase-2 (COX-2) in hepatocellular carcinoma and growth inhibition of hepatoma cell lines by a COX-2 inhibitor, NS-398. Clin Cancer Res 2001; 7: 1410–1418.

    CAS  Google Scholar 

  31. Cheng J, Imanishi H, Liu W, Iwasaki A, Ueki N, Nakamura H et al. Inhibition of the expression of α-smooth muscle actin in human hepatic stellate cell line, LI90, by a selective cyclooxygenase 2 inhibitor, NS-398. Biochem Biophys Res Commun 2002; 297: 1128–1134.

    Article  CAS  Google Scholar 

  32. Shiratori K, Ohgami K, Ilieva IB, Koyama Y, Yoshida K, Ohno S . Inhibition of endotoxin-induced uveitis and potentiation of cyclooxygenase-2 protein expression by α-melanocyte-stimulating hormone. Invest Ophthalmol Vis Sci 2004; 45: 159–164.

    Article  Google Scholar 

  33. Caruso C, Mohn C, Karara AL, Rettori V, Watanobe H, Schioth HB et al. α-Melanocyte-stimulating hormone through melanocortin-4 receptor inhibits nitric oxide synthase and cyclooxygenase expression in the hypothalamus of male rats. Neuroendocrinology 2004; 79: 278–286.

    Article  CAS  Google Scholar 

  34. Maga G, Hubscher U . Proliferating cell nuclear antigen (PCNA): a dancer with many partners. J Cell Sci 2003; 116: 3051–3060.

    Article  CAS  Google Scholar 

  35. Jeong DH, Jang JJ, Lee SJ, Lee JH, Lim IK, Lee MJ et al. Expression patterns of cell cycle-related proteins in a rat cirrhotic model induced by CCl4 or thioacetamide. J Gastroenterol 2001; 36: 24–32.

    Article  CAS  Google Scholar 

  36. Donato MF, Arosio E, Del Ninno E, Ronchi G, Lampertico P, Morabito A et al. High rates of hepatocellular carcinoma in cirrhotic patients with high liver cell proliferative activity. Hepatology 2001; 34: 523–528.

    Article  CAS  Google Scholar 

  37. Giron-Gonzalez JA, Martinez-Sierra C, Rodriguez-Ramos C, Rendon P, Macias MA, Fernandez-Gutierrez C et al. Adhesion molecules as a prognostic marker of liver cirrhosis. Scand J Gastroenterol 2005; 40: 217–224.

    Article  CAS  Google Scholar 

  38. Burra P, Hubscher SG, Shaw J, Elias E, Adams DH . Is the intercellular adhesion molecule-1/leukocyte function associated antigen 1 pathway of leukocyte adhesion involved in the tissue damage of alcoholic hepatitis? Gut 1992; 33: 268–271.

    Article  CAS  Google Scholar 

  39. Simeonova PP, Gallucci RM, Hulderman T, Wilson R, Kommineni C, Rao M et al. The role of tumor necrosis factor-α in liver toxicity, inflammation, and fibrosis induced by carbon tetrachloride. Toxicol Appl Pharmacol 2001; 177: 112–120.

    Article  CAS  Google Scholar 

  40. Ip E, Farrell G, Hall P, Robertson G, Leclercq I . Administration of the potent PPARα agonist, Wy-14,643, reverses nutritional fibrosis and steatohepatitis in mice. Hepatology 2004; 39: 1286–1296.

    Article  CAS  Google Scholar 

  41. Scholzen TE, Sunderkotter C, Kalden DH, Brzoska T, Fastrich M, Fisbeck T et al. Melanocyte-stimulating hormone prevents lipopolysaccharide-induced vasculitis by down-regulating endothelial cell adhesion molecule expression. Endocrinology 2003; 144: 360–370.

    Article  CAS  Google Scholar 

  42. Arthur MJ . Fibrogenesis II. Metalloproteinases and their inhibitors in liver fibrosis. Am J Physiol Gastrointest Liver Physiol 2000; 279: G245–G249.

    Article  CAS  Google Scholar 

  43. Del Carmen Garciade Leon M, Montfort I, Tello Montes E, Lopez Vancell R, Olivos Garcia A, Gonzalez Canto A et al. Hepatocyte production of modulators of extracellular liver matrix in normal and cirrhotic rat liver. Exp Mol Pathol 2006; 80: 97–108.

    Article  Google Scholar 

  44. Parsons CJ, Bradford BU, Pan CQ, Cheung E, Schauer M, Knorr A et al. Antifibrotic effects of a tissue inhibitor of metalloproteinase-1 antibody on established liver fibrosis in rats. Hepatology 2004; 40: 1106–1115.

    Article  CAS  Google Scholar 

  45. Xu GF, Li PT, Wang XY, Jia X, Tian DL, Jiang LD et al. Dynamic changes in the expression of matrix metalloproteinases and their inhibitors, TIMPs, during hepatic fibrosis induced by alcohol in rats. World J Gastroenterol 2004; 10: 3621–3627.

    Article  CAS  Google Scholar 

  46. Issa R, Zhou X, Constandinou CM, Fallowfield J, Millward-Sadler H, Gaca MD et al. Spontaneous recovery from micronodular cirrhosis: evidence for incomplete resolution associated with matrix cross-linking. Gastroenterology 2004; 126: 1795–1808.

    Article  CAS  Google Scholar 

  47. Iimuro Y, Nishio T, Morimoto T, Nitta T, Stefanovic B, Choi SK et al. Delivery of matrix metalloproteinase-1 attenuates established liver fibrosis in the rat. Gastroenterology 2003; 124: 445–458.

    Article  CAS  Google Scholar 

  48. Siller-Lopez F, Sandoval A, Salgado S, Salazar A, Bueno M, Garcia J et al. Treatment with human metalloproteinase-8 gene delivery ameliorates experimental rat liver cirrhosis. Gastroenterology 2004; 126: 1122–1133.

    Article  CAS  Google Scholar 

  49. Limb GA, Matter K, Murphy G, Cambrey AD, Bishop PN, Morris GE et al. Matrix metalloproteinase-1 associates with intracellular organelles and confers resistance to lamin A/C degradation during apoptosis. Am J Pathol 2005; 166: 1555–1563.

    Article  CAS  Google Scholar 

  50. Nie QH, Cheng YQ, Xie YM, Zhou YX, Cao YZ . Inhibiting effect of antisense oligonucleotides phosphorthioate on gene expression of TIMP-1 in rat liver fibrosis. World J Gastroenterol 2001; 7: 363–369.

    Article  CAS  Google Scholar 

  51. Yin P, Luby TM, Chen H, Etemad-Moghadam B, Lee D, Aziz N et al. Generation of expression constructs that secrete bioactive α-MSH and their use in the treatment of experimental autoimmune encephalomyelitis. Gene Therapy 2003; 10: 348–355.

    Article  CAS  Google Scholar 

  52. Molnar MJ, Gilbert R, Lu Y, Liu AB, Guo A, Larochelle N et al. Factors influencing the efficacy, longevity, and safety of electroporation-assisted plasmid-based gene transfer into mouse muscles. Mol Ther 2004; 10: 447–455.

    Article  CAS  Google Scholar 

  53. Vergnes L, Phan J, Strauss M, Tafuri S, Reue K . Cholesterol and cholate components of an atherogenic diet induce distinct stages of hepatic inflammatory gene expression. J Biol Chem 2003; 278: 42774–42784.

    Article  CAS  Google Scholar 

  54. Young DA, Lakey RL, Pennington CJ, Jones D, Kevorkian L, Edwards DR et al. Histone deacetylase inhibitors modulate metalloproteinase gene expression in chondrocytes and block cartilage resorption. Arthritis Res Ther 2005; 7: R503–R512.

    Article  CAS  Google Scholar 

  55. Kossakowska AE, Edwards DR, Lee SS, Urbanski LS, Stabbler AL, Zhang CL et al. Altered balance between matrix metalloproteinases and their inhibitors in experimental biliary fibrosis. Am J Pathol 1998; 153: 1895–1902.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Chang Gung Memorial Hospital Research Grant No. 840451 (CMRPG-840451). We thank Dr Hedley for providing us the recombinant α-MSH expression plasmid used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Jawan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, CH., Lee, TH., Lu, CN. et al. Electroporative α-MSH gene transfer attenuates thioacetamide-induced murine hepatic fibrosis by MMP and TIMP modulation. Gene Ther 13, 1000–1009 (2006). https://doi.org/10.1038/sj.gt.3302744

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302744

Keywords

This article is cited by

Search

Quick links