Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transthoracic direct current shock facilitates intramyocardial transfection of naked plasmid DNA infused via coronary vessels in canines

Abstract

Catheter-mediated, percutaneous, transluminal delivery of naked plasmid DNA (pDNA) into myocardium may offer a valuable strategy to heart diseases. Here, we examined whether clinically available transthoracic direct current (DC) shock improves intracoronary naked DNA transfection into myocardium. Plasmid vector encoding the GL3 luciferase was infused retrogradely into the coronary veins of beagle dogs, whereas another pDNA solution was infused into the left coronary artery. During and after these procedures, the coronary venous sinus was occluded by balloon, and transthoracic DC shock of 200 J was applied immediately after the infusions. Without DC shock, no remarkable increase in luciferase activity was demonstrated in any part of the left ventricular myocardium. In the presence of DC pulsation, significant luciferase expression was detected in the regions that were supplied by left anterior descending coronary artery (LAD), whereas the gene expression in the right coronary artery (RCA) regions was much less drastic. X-gal (5-bromo-4-chloro-3-indolyl-β-D-galactoside) staining of cardiac cross-sections also revealed regional expression of β-galactosidase. Immunohistochemical examinations of heart cryosections revealed that cardiomyocytes in LAD regions successfully expressed transgene product. The present system may enable a new strategy for myocardial gene therapy, without any special device or technique other than cardiac catheterization and DC cardioversion that are generally performed in ordinary hospitals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Guzman RJ, Lemarchand P, Crystal RG, Epstein SE, Finkel T . Efficient gene transfer into myocardium by direct injection of adenovirus vectors. Circ Res 1993; 73: 1202–1207.

    CAS  PubMed  Google Scholar 

  2. French BA, Mazur W, Geske RS, Bolli R . Direct in vivo gene transfer into porcine myocardium using replication-deficient adenoviral vectors. Circulation 1994; 90: 2414–2424.

    CAS  PubMed  Google Scholar 

  3. Magovern CJ, Mack CA, Zhang J, Hahn RT, Ko W, Isom OW et al. Direct in vivo gene transfer to canine myocardium using a replication-deficient adenovirus vector. Ann Thorac Surg 1996; 62: 425–434.

    CAS  PubMed  Google Scholar 

  4. Svensson EC, Marshall DJ, Woodard K, Lin H, Jiang F, Chu L et al. Efficient and stable transduction of cardiomyocytes after intramyocardial injection or intracoronary perfusion with recombinant adeno-associated virus vectors. Circulation 1999; 99: 201–205.

    CAS  PubMed  Google Scholar 

  5. Lin H, Parmacek MS, Morle G, Bolling S, Leiden JM . Expression of recombinant genes in myocardium in vivo after direct injection of DNA. Circulation 1990; 82: 2217–2221.

    CAS  PubMed  Google Scholar 

  6. Acsadi G, Jiao SS, Jani A, Duke D, Williams P, Chong W et al. Direct gene transfer and expression into rat heart in vivo. New Biol 1991; 3: 71–81.

    CAS  PubMed  Google Scholar 

  7. Li K, Welikson RE, Vikstrom KL, Leinwand LA . Direct gene transfer into the mouse heart. J Mol Cell Cardiol 1997; 29: 1499–1504.

    CAS  PubMed  Google Scholar 

  8. Tomiyasu K, Oda Y, Nomura M, Satoh E, Fushiki S, Imanishi J et al. Direct intra-cardiomuscular transfer of beta2-adrenergic receptor gene augments cardiac output in cardiomyopathic hamsters. Gene Therapy 2000; 7: 2087–2093.

    CAS  PubMed  Google Scholar 

  9. Barr E, Carroll J, Kalynych AM, Tripathy SK, Kozarsky K, Wilson JM et al. Efficient catheter-mediated gene transfer into the heart using replication-defective adenovirus. Gene Therapy 1994; 1: 51–58.

    CAS  PubMed  Google Scholar 

  10. French BA, Mazur W, Ali NM, Geske RS, Finnigan JP, Rodgers GP et al. Percutaneous transluminal in vivo gene transfer by recombinant adenovirus in normal porcine coronary arteries, atherosclerotic arteries, and two models of coronary restenosis. Circulation 1994; 90: 2402–2413.

    CAS  PubMed  Google Scholar 

  11. Boekstegers P, von Degenfeld G, Giehrl W, Heinrich D, Hullin R, Kupatt C et al. Myocardial gene transfer by selective pressure-regulated retroinfusion of coronary veins. Gene Therapy 2000; 7: 232–240.

    CAS  PubMed  Google Scholar 

  12. Logeart D, Hatem SN, Heimburger M, Le Roux A, Michel JB, Mercadier JJ . How to optimize in vivo gene transfer to cardiac myocytes: mechanical or pharmacological procedures? Hum Gene Ther 2001; 12: 1601–1610.

    CAS  PubMed  Google Scholar 

  13. Hoshijima M, Ikeda Y, Iwanaga Y, Minamisawa S, Date MO, Gu Y et al. Chronic suppression of heart-failure progression by a pseudophosphorylated mutant of phospholamban via in vivo cardiac rAAVgene delivery. Nat Med 2002; 8: 864–871.

    CAS  PubMed  Google Scholar 

  14. Agrawal RS, Muangman S, Layne MD, Melo L, Perrella MA, Lee RT et al. Pre-emptive gene therapy using recombinant adeno-associated virus delivery of extracellular superoxide dismutase protects heart against ischemic reperfusion injury, improves ventricular function and prolongs survival. Gene Therapy 2004; 11: 962–969.

    CAS  PubMed  Google Scholar 

  15. Su H, Joho S, Huang Y, Barcena A, Arakawa-Hoyt J, Grossman W et al. Adeno-associated viral vector delivers cardiac-specific and hypoxia-inducible VEGF expression in ischemic mouse heart. Proc Natl Acad Sci 2004; 101: 16280–16285.

    CAS  PubMed  Google Scholar 

  16. Niidome T, Huang L . Gene therapy progress and prospects: nonviral vectors. Gene Therapy 2002; 9: 1647–1652.

    CAS  PubMed  Google Scholar 

  17. Mazda O . Improvement of nonviral gene therapy by Epstein–Barr virus (EBV)-based plasmid vectors. Curr Gene Ther 2002; 2: 379–392.

    CAS  PubMed  Google Scholar 

  18. Nishizaki K, Mazda O, Dohi Y, Kawata T, Mizuguchi K, Kitamura S et al. In vivo gene gun-mediated transduction into rat heart with Epstein–Barr virus-based episomal vectors. Ann Thorac Surg 2000; 70: 1332–1337.

    CAS  PubMed  Google Scholar 

  19. Shohet RV, Chen S, Zhou YT, Wang Z, Meidell RS, Unger RH et al. Echocardiographic destruction of albumin microbubbles directs gene delivery to the myocardium. Circulation 2000; 101: 2554–2556.

    CAS  PubMed  Google Scholar 

  20. Vannan M, McCreery T, Li P, Han Z, Unger E, Kuersten B et al. Ultrasound-mediated transfection of canine myocardium by intravenous administration of cationic microbubble-linked plasmid DNA. J Am Soc Echocardiogr 2002; 15: 214–218.

    PubMed  Google Scholar 

  21. Chen S, Shohet RV, Bekeredjian R, Frenkel P, Grayburn PA . Optimization of ultrasound parameters for cardiac gene delivery of adenoviral or plasmid deoxyribonucleic acid by ultrasound-targeted microbubble destruction. J Am Coll Cardiol 2003; 42: 301–308.

    CAS  PubMed  Google Scholar 

  22. Shi Y, Fard A, Vermani P, Zalewski A . Transgene expression in the coronary circulation: transcatheter gene delivery. Gene Therapy 1994; 1: 408–414.

    CAS  PubMed  Google Scholar 

  23. Affleck DG, Yu L, Bull DA, Bailey SH, Kim SW . Augmentation of myocardial transfection using TerplexDNA: a novel gene delivery system. Gene Therapy 2001; 8: 349–353.

    CAS  PubMed  Google Scholar 

  24. Wright MJ, Wightman LM, Lilley C, de Alwis M, Hart SL, Miller A et al. In vivo myocardial gene transfer: optimization, evaluation and direct comparison of gene transfer vectors. Basic Res Cardiol 2001; 96: 227–236.

    CAS  PubMed  Google Scholar 

  25. Qin L, Pahud DR, Ding Y, Bielinska AU, Kukowska-Latallo JF, Baker Jr JR et al. Efficient transfer of genes into murine cardiac grafts by Starburst polyamidoamine dendrimers. Hum Gene Ther 1998; 9: 553–560.

    CAS  PubMed  Google Scholar 

  26. Lee M, Rentz J, Han SO, Bull DA, Kim SW . Water-soluble lipopolymer as an efficient carrier for gene delivery to myocardium. Gene Therapy 2003; 10: 585–593.

    CAS  PubMed  Google Scholar 

  27. Mir LM, Banoun H, Paoletti C . Introduction of definite amounts of nonpermeant molecules into living cells after electropermeabilization: direct access to the cytosol. Exp Cell Res 1998; 175: 15–25.

    Google Scholar 

  28. Andre F, Mir LM . DNA electrotransfer: its principles and an updated review of its therapeutic applications. Gene Therpy 2004; 11 (Suppl 1): S33–S42.

    CAS  Google Scholar 

  29. Heller L, Ugen K, Heller R . Electroporation for targeted gene transfer. Expert Opin Drug Delivery 2005; 2: 255–268.

    CAS  Google Scholar 

  30. Mir LM, Bureau MF, Rangara R, Schwartz B, Scherman D . Long-term, high level in vivo gene expression after electric pulse-mediated gene transfer into skeletal muscle. C R Acad Sci III 1998; 321: 893–899.

    CAS  PubMed  Google Scholar 

  31. Aihara H, Miyazaki J . Gene transfer into muscle by electroporation in vivo. Nat Biotechnol 1998; 16: 867–870.

    CAS  PubMed  Google Scholar 

  32. Heller R, Jaroszeski M, Atkin A, Moradpour D, Gilbert R, Wands J et al. In vivo gene electroinjection and expression in rat liver. FEBS Lett 1996; 389: 225–228.

    CAS  PubMed  Google Scholar 

  33. Suzuki T, Shin BC, Fujikura K, Matsuzaki T, Takata K . Direct gene transfer into rat liver cells by in vivo electroporation. FEBS Lett 1998; 425: 436–440.

    CAS  PubMed  Google Scholar 

  34. Titomirov AV, Sukharev S, Kistanova E . In vivo electroporation and stable transformation of skin cells of newborn mice by plasmid DNA. Biochim Biophys Acta 1991; 1088: 131–134.

    CAS  PubMed  Google Scholar 

  35. Vanbever R, Preat V . In vivo efficacy and safety of skin electroporation. Adv Drug Deliv Rev 1999; 35: 77–88.

    CAS  PubMed  Google Scholar 

  36. Heller R, Schultz J, Lucas ML, Jaroszeski MJ, Heller LC, Gilbert RA et al. Intradermal delivery of interleukin-12 plasmid DNA by in vivo electroporation. DNA Cell Biol 2001; 20: 21–26.

    CAS  PubMed  Google Scholar 

  37. Oshima Y, Sakamoto T, Yamanaka I, Nishi T, Ishibashi T, Inomata H . Targeted gene transfer to corneal endothelium in vivo by electric pulse. Gene Therapy 1998; 5: 1347–1354.

    CAS  PubMed  Google Scholar 

  38. Schwachtgen JL, Ferreira V, Meyer D, Kerbiriou-Nabias D . Optimization of the transfection of human endothelial cells by electroporation. Biotechniques 1994; 17: 882–887.

    CAS  PubMed  Google Scholar 

  39. Ohashi S, Kubo T, Kishida T, Ikeda T, Takahashi K, Arai Y et al. Successful genetic transduction in vivo into synovium by means of electroporation. Biochem Biophys Res Commun 2002; 293: 1530–1535.

    CAS  PubMed  Google Scholar 

  40. Rols MP, Delteil C, Golzio M, Dumond P, Cros S, Teissie J . In vivo electrically mediated protein and gene transfer in murine melanoma. Nat Biotechnol 1998; 16: 168–171.

    CAS  PubMed  Google Scholar 

  41. Kishida T, Asada H, Satoh E, Tanaka S, Shinya M, Hirai H et al. In vivo electroporation-mediated transfer of interleukin-12 and interleukin-18 genes induces significant antitumor effects against melanoma in mice. Gene Therapy 2001; 8: 1234–1240.

    CAS  PubMed  Google Scholar 

  42. Lohr F, Lo DY, Zaharoff DA, Hu K, Zhang X, Li Y et al. Effective tumor therapy with plasmid-encoded cytokines combined with in vivo electroporation. Cancer Res 2001; 61: 3281–3284.

    CAS  PubMed  Google Scholar 

  43. Lucas ML, Heller L, Coppola D, Heller R . IL-12 plasmid delivery by in vivo electroporation for the successful treatment of established subcutaneous B16.F10 melanoma. Mol Ther 2002; 5: 668–675.

    CAS  PubMed  Google Scholar 

  44. Yoshizato K, Nishi T, Goto T, Dev SB, Takeshima H, Kino T et al. Gene delivery with optimized electroporation parameters shows potential for treatment of gliomas. Int J Oncol 2000; 16: 899–905.

    CAS  PubMed  Google Scholar 

  45. Heller L, Jaroszeski MJ, Coppola D, Pottinger C, Gilbert R, Heller R . Electrically mediated plasmid DNA delivery to hepatocellular carcinomas in vivo. Gene Therapy 2000; 7: 826–829.

    CAS  PubMed  Google Scholar 

  46. Beck CS, Pritchard WH, Feil SA . Ventricular fibrillation of long duration abolished by electric shock. JAMA 1947; 135: 985–989.

    CAS  Google Scholar 

  47. March KL, Woody M, Mehdi K, Zipes DP, Brantly M, Trapnell BC . Efficient in vivo catheter-based pericardial gene transfer mediated by adenoviral vectors. Clin Cardiol 1999; 22: I-123–I-129.

    Google Scholar 

  48. von Harsdorf R, Schott RJ, Shen YT, Vatner SF, Mahdavi V, Nadal-Ginard B . Gene injection into myocardium as a useful model for studying gene expression in the heart of large mammals. Circ Res 1993; 72: 688–695.

    CAS  PubMed  Google Scholar 

  49. Zhang G, Budker V, Wolff JA . High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Hum Gene Ther 1999; 10: 1735–1737.

    CAS  PubMed  Google Scholar 

  50. Liu F, Song Y, Liu D . Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Therapy 1999; 6: 1258–1266.

    CAS  PubMed  Google Scholar 

  51. Zhang G, Song YK, Liu D . Long-term expression of human alpha1-antitrypsin gene in mouse liver achieved by intravenous administration of plasmid DNA using a hydrodynamics-based procedure. Gene Therapy 2000; 7: 1344–1349.

    CAS  PubMed  Google Scholar 

  52. Cui FD, Kishida T, Ohashi S, Asada H, Yasutomi K, Satoh E et al. Highly efficient gene transfer into murine liver achieved by intravenous administration of naked Epstei–Barr virus (EBV)-based plasmid vectors. Gene Therapy 2001; 8: 1508–1513.

    CAS  PubMed  Google Scholar 

  53. Zhang G, Budker V, Williams P, Subbotin V, Wolff JA . Efficient expression of naked DNA delivered intraarterially to limb muscles of nonhuman primates. Hum Gene Ther 2001; 12: 427–438.

    CAS  PubMed  Google Scholar 

  54. Gehl J . Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol Scand 2003; 177: 437–447.

    CAS  PubMed  Google Scholar 

  55. Mir LM, Bureau MF, Gehl J, Rangara R, Rouy D, Caillaud JM et al. High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc Natl Acad Sci USA 1999; 96: 4262–4267.

    CAS  PubMed  Google Scholar 

  56. Andreason GL, Evans GA . Optimization of electroporation for transfection of mammalian cell lines. Anal Biochem 1989; 180: 269–275.

    CAS  PubMed  Google Scholar 

  57. Lucas ML, Jaroszeski MJ, Gilbert R, Heller R . In vivo electroporation using an exponentially enhanced pulse: a new waveform. DNA Cell Biol 2001; 20: 183–188.

    CAS  PubMed  Google Scholar 

  58. Nakanishi H, Mazda O, Satoh E, Asada H, Morioka H, Kishida T et al. Nonviral genetic transfer of Fas ligand induced significant growth suppression and apoptotic tumor cell death in prostate cancer in vivo. Gene Therapy 2003; 10: 434–442.

    CAS  PubMed  Google Scholar 

  59. Tomiyasu K, Satoh E, Oda Y, Nishizaki K, Kondo M, Imanishi J et al. Gene transfer in vitro and in vivo with Epstein–Barr virus-based episomal vector results in markedly high transient expression in rodent cells. Biochem Biophys Res Commun 1998; 253: 733–738.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs Yoshiki Itokawa and Hiroshi Nakano (Departments of Surgery and Otorhinolaryngology, Kyoto Prefectural University of Medicine, respectively) for assisting in the animal experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O Mazda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iida, Y., Oda, Y., Nakamori, S. et al. Transthoracic direct current shock facilitates intramyocardial transfection of naked plasmid DNA infused via coronary vessels in canines. Gene Ther 13, 906–916 (2006). https://doi.org/10.1038/sj.gt.3302742

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302742

Keywords

This article is cited by

Search

Quick links