Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genetic design of an optimized packaging cell line for gene vectors transducing human B cells

Abstract

Viral gene vectors often rely on packaging cell lines, which provide the necessary factors in trans for the formation of virus-like particles. Previously, we reported on a first-generation packaging cell line for gene vectors, which are based on the B-lymphotropic Epstein–Barr virus (EBV), a human γ-herpesvirus. This 293HEK-derived packaging cell line harbors a helper virus genome with a genetic modification that prevents the release of helper virions, but efficiently packages vector plasmids into virus-like particles with transducing capacity for human B cells. Here, we extended this basic approach towards a non-transforming, virus-free packaging cell line, which harbors an EBV helper virus genome with seven genetic alterations. In addition, we constructed a novel gene vector plasmid, which is devoid of a prokaryotic antibiotic resistance gene, and thus more suitable for in vivo applications in human gene therapy. We demonstrate in this paper that EBV-based gene vectors can be efficiently generated with this much-improved packaging cell line to provide helper virus-free gene vector stocks with transducing capacity for established human B-cell lines and primary B cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Kay MA, Glorioso JC, Naldini L . Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med 2001; 7: 33–40.

    Article  CAS  PubMed  Google Scholar 

  2. Thomas CE, Ehrhardt A, Kay MA . Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 2003; 4: 346–358.

    Article  CAS  PubMed  Google Scholar 

  3. Kieff E, Rickinson AB . Epstein–Barr virus and its replication. In: Knipe DM et al. (eds), Fields’ Virology. Lippincott, Williams & Wilkins: Philadelphia, 2001, pp 2511–2573.

    Google Scholar 

  4. Janz A, Oezel M, Kurzeder C, Mautner J, Pich D, Kost M et al. Infectious Epstein–Barr virus lacking major glycoprotein BLLF1 (gp350/220) demonstrates the existence of additional viral ligands. J Virol 2000; 74: 10142–10152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang J, Sugden B . Origins of bidirectional replication of Epstein–Barr virus: models for understanding mammalian origins of DNA synthesis. J Cell Biochem 2005; 94: 247–256.

    Article  CAS  PubMed  Google Scholar 

  6. Wang J, Vos JM . Infectious Epstein–Barr virus vectors for episomal gene therapy. Methods Enzymol 2002; 346: 649–660.

    Article  CAS  PubMed  Google Scholar 

  7. White RE, Wade-Martins R, James MR . Infectious delivery of 120-kilobase genomic DNA by an Epstein–Barr virus amplicon vector. Mol Ther 2002; 5: 427–435.

    Article  CAS  PubMed  Google Scholar 

  8. Kochanek S, Schiedner G, Volpers C . High-capacity ‘gutless’ adenoviral vectors. Curr Opin Mol Ther 2001; 3: 454–463.

    CAS  PubMed  Google Scholar 

  9. Wade-Martins R, Saeki Y, Chiocca EA . Infectious delivery of a 135-kb LDLR genomic locus leads to regulated complementation of low-density lipoprotein receptor deficiency in human cells. Mol Ther 2003; 7: 604–612.

    Article  CAS  PubMed  Google Scholar 

  10. Adler H, Messerle M, Koszinowski UH . Cloning of herpesviral genomes as bacterial artificial chromosomes. Rev Med Virol 2003; 13: 111–121.

    Article  CAS  PubMed  Google Scholar 

  11. Neuhierl B, Delecluse HJ . Molecular genetics of DNA viruses: recombinant virus technology. Methods Mol Biol 2005; 292: 353–370.

    CAS  PubMed  Google Scholar 

  12. Borst EM, Posfai G, Pogoda F, Messerle M . Mutagenesis of herpesvirus BACs by allele replacement. Methods Mol Biol 2004; 256: 269–279.

    CAS  PubMed  Google Scholar 

  13. Kolisnychenko V, Plunkett III G, Herring CD, Feher T, Posfai J, Blattner FR et al. Engineering a reduced Escherichia coli genome. Genome Res 2002; 12: 640–647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Saeki Y, Breakefield XO, Chiocca EA . Improved HSV-1 amplicon packaging system using ICP27-deleted, oversized HSV-1 BAC DNA. Methods Mol Med 2003; 76: 51–60.

    CAS  PubMed  Google Scholar 

  15. Wade-Martins R, Smith ER, Tyminski E, Chiocca EA, Saeki Y . An infectious transfer and expression system for genomic DNA loci in human and mouse cells. Nat Biotechnol 2001; 19: 1067–1070.

    Article  CAS  PubMed  Google Scholar 

  16. Stavropoulos TA, Strathdee CA . An enhanced packaging system for helper-dependent herpes simplex virus vectors. J Virol 1998; 72: 7137–7143.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Fraefel C, Song S, Lim F, Lang P, Yu L, Wang Y et al. Helper virus-free transfer of herpes simplex virus type 1 plasmid vectors into neural cells. J Virol 1996; 70: 7190–7197.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Moore PS, Chang Y . Kaposi's sarcoma-associated herpesvirus. In: Knipe DM et al. (eds), Fields’ Virology. Lippincott, Williams & Wilkins: Philadelphia, 2001, pp 2803–2833.

    Google Scholar 

  19. Delecluse HJ, Pich D, Hilsendegen T, Baum C, Hammerschmidt W . A first-generation packaging cell line for Epstein–Barr virus-derived vectors. Proc Natl Acad Sci USA 1999; 96: 5188–5193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wendtner CM, Kurzeder C, Theiss HD, Kofler DM, Baumert J, Delecluse HJ et al. High level of transgene expression in primary chronic lymphocytic leukemia cells using helper-virus-free recombinant Epstein–Barr virus vectors. Exp Hematol 2003; 31: 99–108.

    Article  CAS  PubMed  Google Scholar 

  21. Delecluse HJ, Hilsendegen T, Pich D, Zeidler R, Hammerschmidt W . Propagation and recovery of intact, infectious Epstein–Barr virus from prokaryotic to human cells. Proc Natl Acad Sci USA 1998; 95: 8245–8250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Neuhierl B, Feederle R, Hammerschmidt W, Delecluse HJ . Glycoprotein gp110 of Epstein–Barr virus determines viral tropism and efficiency of infection. Proc Natl Acad Sci USA 2002; 99: 15036–15041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wilkinson DE, Weller SK . Recruitment of cellular recombination and repair proteins to sites of herpes simplex virus type 1 DNA replication is dependent on the composition of viral proteins within prereplicative sites and correlates with the induction of the DNA damage response. J Virol 2004; 78: 4783–4796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Feederle R, Kost M, Baumann M, Janz A, Drouet E, Hammerschmidt W et al. The Epstein–Barr virus lytic program is controlled by the co-operative functions of two transactivators. EMBO J 2000; 19: 3080–3089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zimmermann J, Hammerschmidt W . Structure and role of the terminal repeats of Epstein–Barr virus in processing and packaging of virion DNA. J Virol 1995; 69: 3147–3155.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hammerschmidt W, Sugden B . Genetic analysis of immortalizing functions of Epstein–Barr virus in human B lymphocytes. Nature (London) 1989; 340: 393–397.

    Article  CAS  Google Scholar 

  27. Cohen JI, Wang F, Mannick J, Kieff E . Epstein–Barr virus nuclear protein 2 is a key determinant of lymphocyte transformation. Proc Natl Acad Sci USA 1989; 86: 9558–9562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dirmeier U, Neuhierl B, Kilger E, Reisbach G, Sandberg ML, Hammerschmidt W . Latent membrane protein 1 is critical for efficient growth transformation of human B cells by Epstein–Barr virus. Cancer Res 2003; 63: 2982–2989.

    CAS  PubMed  Google Scholar 

  29. O’Connor M, Peifer M, Bender W . Construction of large DNA segments in Escherichia coli. Science 1989; 244: 1307–1312.

    Article  PubMed  Google Scholar 

  30. Kilger E, Kieser A, Baumann M, Hammerschmidt W . Epstein–Barr virus-mediated B-cell proliferation is dependent upon latent membrane protein 1, which simulates an activated CD40 receptor. EMBO J 1998; 17: 1700–1709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kempkes B, Pich D, Zeidler R, Hammerschmidt W . Immortalization of human primary B lymphocytes in vitro with DNA. Proc Nat Acad Sci USA 1995; 92: 5875–5879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Griffin BE, Björck E, Bjursell G, Lindahl T . Sequence complexity of circular Epstein–Barr virus DNA in transformed cells. J Virol 1981; 40: 11–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kaye KM, Izumi KM, Kieff E . Epstein–Barr virus latent membrane protein 1 is essential for B-lymphocyte growth transformation. Proc Natl Acad Sci USA 1993; 90: 9150–9154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tomkinson B, Robertson E, Kieff E . Epstein–Barr virus nuclear proteins EBNA-3A and EBNA-3C are essential for B-lymphocyte growth transformation. J Virol 1993; 67: 2014–2025.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kempkes B, Pich D, Zeidler R, Sugden B, Hammerschmidt W . Immortalization of human B lymphocytes by a plasmid containing 71 kilobase pairs of Epstein–Barr virus DNA. J Virol 1995; 69: 231–238.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Pfuller R, Hammerschmidt W . Plasmid-like replicative intermediates of the Epstein–Barr virus lytic origin of DNA replication. J Virol 1996; 70: 3423–3431.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hellebrand E, Mautner J, Reisbach G, Nimmerjahn F, Hallek M, Mocikat R et al. Epstein–Barr virus vector-mediated gene transfer into human B cells: potential for antitumor vaccination. Gene Therapy 2005 (Epub ahead of print).

  38. Feederle R, Shannon-Lowe C, Baldwin G, Delecluse HJ . Defective infectious particles and rare packaged genomes produced by cells carrying terminal-repeat-negative Epstein–Barr virus. J Virol 2005; 79: 7641–7647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schultze JL, Michalak S, Seamon MJ, Dranoff G, Jung K, Daley J et al. CD40-activated human B cells: an alternative source of highly efficient antigen presenting cells to generate autologous antigen-specific T cells for adoptive immunotherapy. J Clin Invest 1997; 100: 2757–2765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pansegrau W, Lanka E, Barth PT, Figurski DH, Guiney DG, Haas D et al. Complete nucleotide sequence of Birmingham IncP alpha plasmids. Compilation and comparative analysis. J Mol Biol 1994; 239: 623–663.

    Article  CAS  PubMed  Google Scholar 

  41. Mindich L, Cohen J, Weisburd M . Isolation of nonsense suppressor mutants in Pseudomonas. J Bacteriol 1976; 126: 177–182.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hammerschmidt W, Sugden B . Epstein–Barr virus sustains Burkitt's lymphomas and Hodgkin's disease. Trends Mol Med 2004; 10: 331–336.

    Article  CAS  PubMed  Google Scholar 

  43. Damania B . Oncogenic gamma-herpesviruses: comparison of viral proteins involved in tumorigenesis. Nat Rev Microbiol 2004; 2: 656–668.

    Article  CAS  PubMed  Google Scholar 

  44. Schepers A, Pich D, Hammerschmidt W . A transcription factor with homology to the AP-1 family links RNA transcription and DNA replication in the lytic cycle of Epstein–Barr virus. EMBO J 1993; 12: 3921–3929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Altmann M, Hammerschmidt W . Epstein–Barr virus provides a new paradigm: a requirement for the immediate inhibition of apoptosis. PLoS Biol 2005; 3: e404.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Dirmeier U, Hoffmann R, Kilger E, Schultheiss U, Briseno C, Gires O et al. Latent membrane protein 1 of Epstein–Barr virus coordinately regulates proliferation with control of apoptosis. Oncogene 2005; 24: 1711–1717.

    Article  CAS  PubMed  Google Scholar 

  47. Wilson JB, Bell JL, Levine AJ . Expression of Epstein–Barr virus nuclear antigen-1 induces B cell neoplasia in transgenic mice. EMBO J 1996; 15: 3117–3126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kennedy G, Komano J, Sugden B . Epstein–Barr virus provides a survival factor to Burkitt's lymphomas. Proc Natl Acad Sci USA 2003; 100: 14269–14274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kang MS, Lu H, Yasui T, Sharpe A, Warren H, Cahir-McFarland E et al. Epstein–Barr virus nuclear antigen 1 does not induce lymphoma in transgenic FVB mice. Proc Natl Acad Sci USA 2005; 102: 820–825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kang MS, Hung SC, Kieff E . Epstein–Barr virus nuclear antigen 1 activates transcription from episomal but not integrated DNA and does not alter lymphocyte growth. Proc Natl Acad Sci USA 2001; 98: 15233–15238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hung SC, Kang MS, Kieff E . Maintenance of Epstein–Barr virus (EBV) oriP-based episomes requires EBV-encoded nuclear antigen-1 chromosome-binding domains, which can be replaced by high-mobility group-I or histone H1. Proc Natl Acad Sci USA 2001; 98: 1865–1870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Graham FL, Smiley J, Russell WC, Nairn R . Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 1977; 36: 59–74.

    Article  CAS  PubMed  Google Scholar 

  53. Garrone P, Neidhardt EM, Garcia E, Galibert L, van Kooten C, Banchereau J . Fas ligation induces apoptosis of CD40-activated human B lymphocytes. J Exp Med 1995; 182: 1265–1273.

    Article  CAS  PubMed  Google Scholar 

  54. Pulvertaft JV . Cytology of Burkitt's tumour (African Lymphoma). Lancet 1964; 39: 238–240.

    Article  Google Scholar 

  55. Miller G, Shope T, Lisco H, Stitt D, Lipman M . Epstein–Barr virus: transformation, cytopathic changes, and viral antigens in squirrel monkey and marmoset leukocytes. Proc Natl Acad Sci USA 1972; 69: 383–387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hammerschmidt W, Sugden B . Identification and characterization of oriLyt, a lytic origin of DNA replication of Epstein–Barr virus. Cell 1988; 55: 427–433.

    Article  CAS  PubMed  Google Scholar 

  57. Hsu H, Xiong J, Goeddel DV . The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell 1995; 81: 495–504.

    Article  CAS  PubMed  Google Scholar 

  58. Baer R, Bankier AT, Biggin MD, Deininger PL, Farrell PJ, Gibson TJ et al. DNA sequence and expression of the B95-8 Epstein–Barr virus genome. Nature (London) 1984; 310: 207–211.

    Article  CAS  Google Scholar 

  59. Posfai G, Koob MD, Kirkpatrick HA, Blattner FR . Versatile insertion plasmids for targeted genome manipulations in bacteria: isolation, deletion, and rescue of the pathogenicity island LEE of the Escherichia coli O157:H7 genome. J Bacteriol 1997; 179: 4426–4428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ihara M, Oda Y, Yayamoto K . Convenient construction of strains useful for transducing recA mutations with bacteriophage P1. FEMS Microbiol Lett 1985; 30: 33–35.

    Article  Google Scholar 

  61. Gruffat H, Batisse J, Pich D, Neuhierl B, Manet E, Hammerschmidt W et al. Epstein–Barr virus mRNA export factor EB2 is essential for production of infectious virus. J Virol 2002; 76: 9635–9644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Joachim Ellwart and Karin Nispel for support with the cell sorting device. Our work was supported by SFB455 of the Deutsche Forschungsgemeinschaft, by the Bayerische Forschungsstiftung and by Public Health Service Grant CA70723 to WH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W Hammerschmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hettich, E., Janz, A., Zeidler, R. et al. Genetic design of an optimized packaging cell line for gene vectors transducing human B cells. Gene Ther 13, 844–856 (2006). https://doi.org/10.1038/sj.gt.3302714

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302714

Keywords

This article is cited by

Search

Quick links