Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Allele-specific RNA interference for neurological disease

Abstract

Suppressing the expression of toxic genes through RNAi holds great promise for the treatment of human disease. Allele-specific approaches have now been used to silence dominant toxic genes implicated in several neurological disorders. Here, we review strategies used to achieve allele-specific silencing in light of recent developments in the field of RNAi biology. In particular, new insights into siRNA and miRNA processing may be used to improve efficiency and specificity of RNAi therapy. We further discuss steps that can be taken to maximize the therapeutic benefits of this powerful technology.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Xia H, Mao Q, Eliason EL, Harper SQ, Martins IH, Orr HT et al. RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat Med 2004; 10: 816–820.

    CAS  Article  Google Scholar 

  2. Rodriguez-Lebron E, Denovan-Wright EM, Nash K, Lewin AS, Mandel RJ . Intrastriatal rAAV-mediated delivery of anti-huntingtin shRNAs induces partial reversal of disease progression in R6/1 Huntington's disease transgenic mice. Mol Ther 2005; 12: 618–633.

    CAS  Article  Google Scholar 

  3. Harper SQ, Staber PD, He X, Eliason SL, Martins IH, Mao Q et al. RNA interference improves motor and neuropathological abnormalities in a Huntington's disease mouse model. Proc Natl Acad Sci USA 2005; 102: 5820–5825.

    CAS  Article  Google Scholar 

  4. Raoul C, Abbas-Terki T, Bensadoun JC, Guillot S, Haase G, Szulc J et al. Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS. Nat Med 2005; 11: 423–428.

    CAS  Article  Google Scholar 

  5. Ralph GS, Radcliffe PA, Day DM, Carthy JM, Leroux MA, Lee DC et al. Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nat Med 2005; 11: 429–433.

    CAS  Article  Google Scholar 

  6. Khvorova A, Reynolds A, Jayasena SD . Functional siRNAs and miRNAs exhibit strand bias. Cell 2003; 115: 209–216.

    CAS  Article  Google Scholar 

  7. Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD . Asymmetry in the assembly of the RNAi enzyme complex. Cell 2003; 115: 199–208.

    CAS  Article  Google Scholar 

  8. Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 2004; 305: 1437–1441.

    CAS  Article  Google Scholar 

  9. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC . Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391: 806–811.

    CAS  Article  Google Scholar 

  10. Mendell JT . MicroRNAs: critical regulators of development, cellular physiology and malignancy. Cell Cycle 2005; 4: 1179–1184.

    CAS  Article  Google Scholar 

  11. Murchison EP, Partridge JF, Tam OH, Cheloufi S, Hannon GJ . Characterization of Dicer-deficient murine embryonic stem cells. Proc Natl Acad Sci USA 2005; 102: 12135–12140.

    CAS  Article  Google Scholar 

  12. Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ . Processing of primary microRNAs by the microprocessor complex. Nature 2004; 432: 231–235.

    CAS  Article  Google Scholar 

  13. Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281–297.

    CAS  Article  Google Scholar 

  14. Elbashir SM, Martinez J, Patkaniowska A, Lendeckel W, Tuschl T . Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J 2001; 20: 6877–6888.

    CAS  Article  Google Scholar 

  15. Haley B, Zamore PD . Kinetic analysis of the RNAi enzyme complex. Nat Struct Mol Biol 2004; 11: 599–606.

    CAS  Article  Google Scholar 

  16. Ding H, Schwarz DS, Keene A, Affar el B, Fenton L, Xia X et al. Selective silencing by RNAi of a dominant allele that causes amyotrophic lateral sclerosis. Aging Cell 2003; 2: 209–217.

    CAS  Article  Google Scholar 

  17. Miller VM, Gouvion CM, Davidson BL, Paulson HL . Targeting Alzheimer's disease genes with RNA interference: an efficient strategy for silencing mutant alleles. Nucleic Acids Res 2004; 32: 661–668.

    CAS  Article  Google Scholar 

  18. Gonzalez-Alegre P, Miller VM, Davidson BL, Paulson HL . Toward therapy for DYT1 dystonia: allele-specific silencing of mutant TorsinA. Ann Neurol 2003; 53: 781–787.

    CAS  Article  Google Scholar 

  19. Miller VM, Xia H, Marrs GL, Gouvion CM, Lee G, Davidson BL et al. Allele-specific silencing of dominant disease genes. Proc Natl Acad Sci USA 2003; 100: 7195–7200.

    CAS  Article  Google Scholar 

  20. Gaspar C, Lopes-Cendes I, Hayes S, Goto J, Arvidsson K, Dias A et al. Ancestral origins of the Machado–Joseph disease mutation: a worldwide haplotype study. Am J Hum Genet 2001; 68: 523–528.

    CAS  Article  Google Scholar 

  21. Reiner A, Dragatsis I, Zeitlin S, Goldowitz D . Wild-type huntingtin plays a role in brain development and neuronal survival. Mol Neurobiol 2003; 28: 259–276.

    CAS  Article  Google Scholar 

  22. Almqvist E, Spence N, Nichol K, Andrew SE, Vesa J, Peltonen L et al. Ancestral differences in the distribution of the delta 2642 glutamic acid polymorphism is associated with varying CAG repeat lengths on normal chromosomes: insights into the genetic evolution of Huntington disease. Hum Mol Genet 1995; 4: 207–214.

    CAS  Article  Google Scholar 

  23. Ozelius LJ, Hewett JW, Page CE, Bressman SB, Kramer PL, Shalish C et al. The early-onset torsion dystonia gene (DYT1) encodes an ATP-binding protein. Nat Genet 1997; 17: 40–48.

    CAS  Article  Google Scholar 

  24. Breakefield XO, Kamm C, Hanson PI . TorsinA: movement at many levels. Neuron 2001; 31: 9–12.

    CAS  Article  Google Scholar 

  25. Gonzalez-Alegre P, Paulson HL . Aberrant cellular behavior of mutant torsinA implicates nuclear envelope dysfunction in DYT1 dystonia. J Neurosci 2004; 24: 2593–2601.

    CAS  Article  Google Scholar 

  26. Lipscombe D . Neuronal proteins custom designed by alternative splicing. Curr Opin Neurobiol 2005; 15: 358–363.

    CAS  Article  Google Scholar 

  27. Parker JS, Roe SM, Barford D . Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity. EMBO J 2004; 23: 4727–4737.

    CAS  Article  Google Scholar 

  28. Song JJ, Smith SK, Hannon GJ, Joshua-Tor L . Crystal structure of Argonaute and its implications for RISC slicer activity. Science 2004; 305: 1434–1437.

    CAS  Article  Google Scholar 

  29. Tomari Y, Matranga C, Haley B, Martinez N, Zamore PD . A protein sensor for siRNA asymmetry. Science 2004; 306: 1377–1380.

    CAS  Article  Google Scholar 

  30. Parker JS, Roe SM, Barford D . Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex. Nature 2005; 434: 663–666.

    CAS  Article  Google Scholar 

  31. Ma JB, Yuan YR, Meister G, Pei Y, Tuschl T, Patel DJ . Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature 2005; 434: 666–670.

    CAS  Article  Google Scholar 

  32. Vermeulen A, Behlen L, Reynolds A, Wolfson A, Marshall WS, Karpilow J et al. The contributions of dsRNA structure to Dicer specificity and efficiency. Rna 2005; 11: 674–682.

    CAS  Article  Google Scholar 

  33. Miyagishi M, Taira K . U6 promoter-driven siRNAs with four uridine 3′ overhangs efficiently suppress targeted gene expression in mammalian cells. Nat Biotechnol 2002; 20: 497–500.

    CAS  Article  Google Scholar 

  34. Cullen BR . Transcription and processing of human microRNA precursors. Mol Cell 2004; 16: 861–865.

    CAS  Article  Google Scholar 

  35. Zeng Y, Cullen BR . Efficient processing of primary microRNA hairpins by Drosha requires flanking nonstructured RNA sequences. J Biol Chem 2005; 280: 27595–27603.

    CAS  Article  Google Scholar 

  36. Zeng Y, Cai X, Cullen BR . Use of RNA polymerase II to transcribe artificial microRNAs. Methods Enzymol 2005; 392: 371–380.

    CAS  Article  Google Scholar 

  37. Morrissey DV, Lockridge JA, Shaw L, Blanchard K, Jensen K, Breen W et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol 2005; 23: 1002–1007.

    CAS  Article  Google Scholar 

  38. Manoharan M . RNA interference and chemically modified small interfering RNAs. Curr Opin Chem Biol 2004; 8: 570–579.

    CAS  Article  Google Scholar 

  39. Eckstein F . Small non-coding RNAs as magic bullets. Trends Biochem Sci 2005; 30: 445–452.

    CAS  Article  Google Scholar 

  40. Check E . A crucial test. Nat Med 2005; 11: 243–244.

    CAS  Article  Google Scholar 

  41. Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 2004; 432: 173–178.

    CAS  Article  Google Scholar 

  42. Song E, Zhu P, Lee SK, Chowdhury D, Kussman S, Dykxhoorn DM et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol 2005; 23: 709–717.

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Rodriguez-Lebron.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rodriguez-Lebron, E., Paulson, H. Allele-specific RNA interference for neurological disease. Gene Ther 13, 576–581 (2006). https://doi.org/10.1038/sj.gt.3302702

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302702

Keywords

  • siRNA
  • miRNA
  • allele-specific
  • dominant
  • neurodegenerative
  • delivery

Further reading

Search

Quick links