Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Induction of effective therapeutic antitumor immunity by direct in vivo administration of lentiviral vectors

Abstract

Ex vivo lentivirally transduced dendritic cells (DC) have been described to induce CD8+ and CD4+ T-cell responses against various tumor-associated antigens (TAAs) in vitro and in vivo. We report here that direct administration of ovalbumin (OVA) encoding lentiviral vectors caused in vivo transduction of cells that were found in draining lymph nodes (LNs) and induced potent anti-OVA cytotoxic T cells similar to those elicited by ex vivo transduced DC. The cytotoxic T-lymphocyte (CTL) response following direct injection of lentiviral vectors was highly effective in eliminating target cells in vivo up to 30 days after immunization and was efficiently recalled after a boost immunization. Injection of lentiviral vectors furthermore activated OVA-specific CD4+ T cells and this CD4 help was shown to be necessary for an adequate primary and memory CTL response. When tested in therapeutic tumor experiments with OVA+ melanoma cells, direct administration of lentiviral vectors slowed down tumor growth to a comparable extent with the highest dose of ex vivo transduced DC. Taken together, these data indicate that direct in vivo administration of lentiviral vectors encoding TAAs has strong potential for anticancer vaccination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

DC:

dendritic cells

CM:

complete medium

TU:

transducing units

LN:

lymph node

References

  1. Barth Jr RJ, Bock SN, Mule JJ, Rosenberg SA . Unique murine tumor-associated antigens identified by tumor infiltrating lymphocytes. J Immunol 1990; 144: 1531–1537.

    CAS  PubMed  Google Scholar 

  2. Van den Eynde BJ, van der Bruggen P . T cell defined tumor antigens. Curr Opin Immunol 1997; 9: 684–693.

    Article  CAS  PubMed  Google Scholar 

  3. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ et al. Immunobiology of dendritic cells. Annu Rev Immunol 2000; 18: 767–811.

    Article  CAS  PubMed  Google Scholar 

  4. Banchereau J, Steinman RM . Dendritic cells and the control of immunity. Nature 1998; 392: 245–252.

    Article  CAS  PubMed  Google Scholar 

  5. Lutz MB, Kukutsch N, Ogilvie AL, Rossner S, Koch F, Romani N et al. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods 1999; 223: 77–92.

    Article  CAS  PubMed  Google Scholar 

  6. Tuyaerts S, Noppe SM, Corthals J, Breckpot K, Heirman C, De Greef C et al. Generation of large numbers of dendritic cells in a closed system using cell factories. J Immunol Methods 2002; 264: 135–151.

    Article  CAS  PubMed  Google Scholar 

  7. Thurner B, Roder C, Dieckmann D, Heuer M, Kruse M, Glaser A et al. Generation of large numbers of fully mature and stable dendritic cells from leukapheresis products for clinical application. J Immunol Methods 1999; 223: 1–15.

    Article  CAS  PubMed  Google Scholar 

  8. Dietz AB, Vuk-Pavlovic S . High efficiency adenovirus-mediated gene transfer to human dendritic cells. Blood 1998; 91: 392–398.

    CAS  PubMed  Google Scholar 

  9. Di Nicola M, Siena S, Bregni M, Longoni P, Magni M, Milanesi M et al. Gene transfer into human dendritic antigen-presenting cells by vaccinia virus and adenovirus vectors. Cancer Gene Ther 1998; 5: 350–356.

    CAS  PubMed  Google Scholar 

  10. De Veerman M, Heirman C, Van Meirvenne S, Devos S, Corthals J, Moser M et al. Retrovirally transduced bone marrow-derived dendritic cells require CD4+ T cell help to elicit protective and therapeutic antitumor immunity. J Immunol 1999; 162: 144–151.

    CAS  PubMed  Google Scholar 

  11. Reeves ME, Royal RE, Lam JS, Rosenberg SA, Hwu P . Retroviral transduction of human dendritic cells with a tumor-associated antigen gene. Cancer Res 1996; 56: 5672–5677.

    CAS  PubMed  Google Scholar 

  12. Van Tendeloo VF, Snoeck HW, Lardon F, Vanham GL, Nijs G, Lenjou M et al. Nonviral transfection of distinct types of human dendritic cells: high-efficiency gene transfer by electroporation into hematopoietic progenitor- but not monocyte-derived dendritic cells. Gene Therapy 1998; 5: 700–707.

    Article  CAS  PubMed  Google Scholar 

  13. Ponnazhagan S, Curiel DT, Shaw DR, Alvarez RD, Siegal GP . Adeno-associated virus for cancer gene therapy. Cancer Res 2001; 61: 6313–6321.

    CAS  PubMed  Google Scholar 

  14. Arthur JF, Butterfield LH, Roth MD, Bui LA, Kiertscher SM, Lau R et al. A comparison of gene transfer methods in human dendritic cells. Cancer Gene Ther 1997; 4: 17–25.

    CAS  PubMed  Google Scholar 

  15. Nagorsen D, Panelli M, Dudley ME, Finkelstein SE, Rosenberg SA, Marincola FM . Biased epitope selection by recombinant vaccinia-virus (rVV)-infected mature or immature dendritic cells. Gene Therapy 2003; 10: 1754–1765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Di Nicola M, Carlo-Stella C, Anichini A, Mortarini R, Guidetti A, Tragni G et al. Clinical protocol. Immunization of patients with malignant melanoma with autologous CD34(+) cell-derived dendritic cells transduced ex vivo with a recombinant replication-deficient vaccinia vector encoding the human tyrosinase gene: a phase I trial. Hum Gene Ther 2003; 14: 1347–1360.

    Article  CAS  PubMed  Google Scholar 

  17. Lonchay C, van der Bruggen P, Connerotte T, Hanagiri T, Coulie P, Colau D et al. Correlation between tumor regression and T cell responses in melanoma patients vaccinated with a MAGE antigen. Proc Natl Acad Sci USA 2004; 101 (Suppl 2): 14631–14638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Karanikas V, Lurquin C, Colau D, van Baren N, De Smet C, Lethe B et al. Monoclonal anti-MAGE-3 CTL responses in melanoma patients displaying tumor regression after vaccination with a recombinant canarypox virus. J Immunol 2003; 171: 4898–4904.

    Article  CAS  PubMed  Google Scholar 

  19. Schroers R, Sinha I, Segall H, Schmidt-Wolf IG, Rooney CM, Brenner MK et al. Transduction of human PBMC-derived dendritic cells and macrophages by an HIV-1-based lentiviral vector system. Mol Ther 2000; 1: 171–179.

    Article  CAS  PubMed  Google Scholar 

  20. Rouas R, Uch R, Cleuter Y, Jordier F, Bagnis C, Mannoni P et al. Lentiviral-mediated gene delivery in human monocyte-derived dendritic cells: optimized design and procedures for highly efficient transduction compatible with clinical constraints. Cancer Gene Ther 2002; 9: 715–724.

    Article  CAS  PubMed  Google Scholar 

  21. Firat H, Zennou V, Garcia-Pons F, Ginhoux F, Cochet M, Danos O et al. Use of a lentiviral flap vector for induction of CTL immunity against melanoma. Perspectives for immunotherapy. J Gene Med 2002; 4: 38–45.

    Article  PubMed  Google Scholar 

  22. Breckpot K, Dullaers M, Bonehill A, van Meirvenne S, Heirman C, de Greef C et al. Lentivirally transduced dendritic cells as a tool for cancer immunotherapy. J Gene Med 2003; 5: 654–667.

    Article  CAS  PubMed  Google Scholar 

  23. Jenne L, Schuler G, Steinkasserer A . Viral vectors for dendritic cell-based immunotherapy. Trends Immunol 2001; 22: 102–107.

    Article  CAS  PubMed  Google Scholar 

  24. Chinnasamy N, Chinnasamy D, Toso JF, Lapointe R, Candotti F, Morgan RA et al. Efficient gene transfer to human peripheral blood monocyte-derived dendritic cells using human immunodeficiency virus type 1-based lentiviral vectors. Hum Gene Ther 2000; 11: 1901–1909.

    Article  CAS  PubMed  Google Scholar 

  25. Gruber A, Kan-Mitchell J, Kuhen KL, Mukai T, Wong-Staal F . Dendritic cells transduced by multiply deleted HIV-1 vectors exhibit normal phenotypes and functions and elicit an HIV-specific cytotoxic T-lymphocyte response in vitro. Blood 2000; 96: 1327–1333.

    CAS  PubMed  Google Scholar 

  26. Dyall J, Latouche JB, Schnell S, Sadelain M . Lentivirus-transduced human monocyte-derived dendritic cells efficiently stimulate antigen-specific cytotoxic T lymphocytes. Blood 2001; 97: 114–121.

    Article  CAS  PubMed  Google Scholar 

  27. Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D . Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 1997; 15: 871–875.

    Article  CAS  PubMed  Google Scholar 

  28. Miyoshi H, Blomer U, Takahashi M, Gage FH, Verma IM . Development of a self-inactivating lentivirus vector. J Virol 1998; 72: 8150–8157.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zufferey R, Donello JE, Trono D, Hope TJ . Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 1999; 73: 2886–2892.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Chinnasamy D, Chinnasamy N, Enriquez MJ, Otsu M, Morgan RA, Candotti F . Lentiviral-mediated gene transfer into human lymphocytes: role of HIV-1 accessory proteins. Blood 2000; 96: 1309–1316.

    CAS  PubMed  Google Scholar 

  31. Follenzi A, Ailles LE, Bakovic S, Geuna M, Naldini L . Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat Genet 2000; 25: 217–222.

    Article  CAS  PubMed  Google Scholar 

  32. Rosenberg SA, Yang JC, Restifo NP . Cancer immunotherapy: moving beyond current vaccines. Nat Med 2004; 10: 909–915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Banchereau J, Palucka AK . Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 2005; 5: 296–306.

    Article  CAS  PubMed  Google Scholar 

  34. Hsu FJ, Benike C, Fagnoni F, Liles TM, Czerwinski D, Taidi B et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med 1996; 2: 52–58.

    Article  CAS  PubMed  Google Scholar 

  35. Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 1998; 4: 328–332.

    Article  CAS  PubMed  Google Scholar 

  36. Timmerman JM, Levy R . Dendritic cell vaccines for cancer immunotherapy. Annu Rev Med 1999; 50: 507–529.

    Article  CAS  PubMed  Google Scholar 

  37. Schultz ES, Schuler-Thurner B, Stroobant V, Jenne L, Berger TG, Thielemanns K et al. Functional analysis of tumor-specific Th cell responses detected in melanoma patients after dendritic cell-based immunotherapy. J Immunol 2004; 172: 1304–1310.

    Article  CAS  PubMed  Google Scholar 

  38. Schuler-Thurner B, Schultz ES, Berger TG, Weinlich G, Ebner S, Woerl P et al. Rapid induction of tumor-specific type 1T helper cells in metastatic melanoma patients by vaccination with mature, cryopreserved, peptide-loaded monocyte-derived dendritic cells. J Exp Med 2002; 195: 1279–1288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. VandenDriessche T, Thorrez L, Naldini L, Follenzi A, Moons L, Berneman Z et al. Lentiviral vectors containing the human immunodeficiency virus type-1 central polypurine tract can efficiently transduce nondividing hepatocytes and antigen-presenting cells in vivo. Blood 2002; 100: 813–822.

    Article  CAS  PubMed  Google Scholar 

  40. Esslinger C, Chapatte L, Finke D, Miconnet I, Guillaume P, Levy F et al. In vivo administration of a lentiviral vaccine targets DCs and induces efficient CD8(+) T cell responses. J Clin Invest 2003; 111: 1673–1681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Palmowski MJ, Lopes L, Ikeda Y, Salio M, Cerundolo V, Collins MK . Intravenous injection of a lentiviral vector encoding NY-ESO-1 induces an effective CTL response. J Immunol 2004; 172: 1582–1587.

    Article  CAS  PubMed  Google Scholar 

  42. Van Meirvenne S, Straetman L, Heirman C, Dullaers M, De Greef C, Van Tendeloo V et al. Efficient genetic modification of murine dendritic cells by electroporation with mRNA. Cancer Gene Ther 2002; 9: 787–797.

    Article  CAS  PubMed  Google Scholar 

  43. Dullaers M, Breckpot K, Van Meirvenne S, Bonehill A, Tuyaerts S, Michiels A et al. Side-by-side comparison of lentivirally transduced and MRNA-electroporated dendritic cells: implications for cancer immunotherapy protocols. Mol Ther 2004; 10: 768–779.

    Article  CAS  PubMed  Google Scholar 

  44. Eglin RP, Wilkinson AR . HIV infection and pasteurisation of breast milk. Lancet 1987; 1: 1093.

    Article  CAS  PubMed  Google Scholar 

  45. Brooks AR, Harkins RN, Wang P, Qian HS, Liu P, Rubanyi GM . Transcriptional silencing is associated with extensive methylation of the CMV promoter following adenoviral gene delivery to muscle. J Gene Med 2004; 6: 395–404.

    Article  CAS  PubMed  Google Scholar 

  46. Gill DR, Smyth SE, Goddard CA, Pringle IA, Higgins CF, Colledge WH et al. Increased persistence of lung gene expression using plasmids containing the ubiquitin C or elongation factor 1alpha promoter. Gene Therapy 2001; 8: 1539–1546.

    Article  CAS  PubMed  Google Scholar 

  47. Teschendorf C, Warrington Jr KH, Siemann DW, Muzyczka N . Comparison of the EF-1 alpha and the CMV promoter for engineering stable tumor cell lines using recombinant adeno-associated virus. Anticancer Res 2002; 22: 3325–3330.

    CAS  PubMed  Google Scholar 

  48. Sun JC, Bevan MJ . Defective CD8T cell memory following acute infection without CD4T cell help. Science 2003; 300: 339–342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shedlock DJ, Shen H . Requirement for CD4T cell help in generating functional CD8T cell memory. Science 2003; 300: 337–339.

    Article  CAS  PubMed  Google Scholar 

  50. Bourgeois C, Rocha B, Tanchot C . A role for CD40 expression on CD8+ T cells in the generation of CD8+ T cell memory. Science 2002; 297: 2060–2063.

    Article  CAS  PubMed  Google Scholar 

  51. Smith CM, Wilson NS, Waithman J, Villadangos JA, Carbone FR, Heath WR et al. Cognate CD4(+) T cell licensing of dendritic cells in CD8(+) T cell immunity. Nat Immunol 2004; 5: 1143–1148.

    Article  CAS  PubMed  Google Scholar 

  52. Bourgeois C, Tanchot C . Mini-review CD4T cells are required for CD8T cell memory generation. Eur J Immunol 2003; 33: 3225–3231.

    Article  CAS  PubMed  Google Scholar 

  53. Behrens G, Li M, Smith CM, Belz GT, Mintern J, Carbone FR et al. Helper T cells, dendritic cells and CTL Immunity. Immunol Cell Biol 2004; 82: 84–90.

    Article  CAS  PubMed  Google Scholar 

  54. Colonna M, Trinchieri G, Liu YJ . Plasmacytoid dendritic cells in immunity. Nat Immunol 2004; 5: 1219–1226.

    Article  CAS  PubMed  Google Scholar 

  55. Adam C, King S, Allgeier T, Braumuller H, Luking C, Mysliwietz J et al. DC-NK cell cross talk as a novel CD4+ T-cell-independent pathway for antitumor CTL induction. Blood 2005; 106: 338–344.

    Article  CAS  PubMed  Google Scholar 

  56. Heath WR, Belz GT, Behrens GM, Smith CM, Forehan SP, Parish IA et al. Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol Rev 2004; 199: 9–26.

    Article  CAS  PubMed  Google Scholar 

  57. Inaba K, Turley S, Yamaide F, Iyoda T, Mahnke K, Inaba M et al. Efficient presentation of phagocytosed cellular fragments on the major histocompatibility complex class II products of dendritic cells. J Exp Med 1998; 188: 2163–2173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kleindienst P, Brocker T . Endogenous dendritic cells are required for amplification of T cell responses induced by dendritic cell vaccines in vivo. J Immunol 2003; 170: 2817–2823.

    Article  CAS  PubMed  Google Scholar 

  59. Metharom P, Ellem KA, Schmidt C, Wei MQ . Lentiviral vector-mediated tyrosinase-related protein 2 gene transfer to dendritic cells for the therapy of melanoma. Hum Gene Ther 2001; 12: 2203–2213.

    Article  CAS  PubMed  Google Scholar 

  60. Goldszmid RS, Idoyaga J, Bravo AI, Steinman R, Mordoh J, Wainstok R . Dendritic cells charged with apoptotic tumor cells induce long-lived protective CD4+ and CD8+ T cell immunity against B16 melanoma. J Immunol 2003; 171: 5940–5947.

    Article  CAS  PubMed  Google Scholar 

  61. Kalinski P, Giermasz A, Nakamura Y, Basse P, Storkus WJ, Kirkwood JM et al. Helper role of NK cells during the induction of anticancer responses by dendritic cells. Mol Immunol 2005; 42: 535–539.

    Article  CAS  PubMed  Google Scholar 

  62. Walzer T, Dalod M, Robbins SH, Zitvogel L, Vivier E . Natural killer cells and dendritic cells: ‘l’union fait la force’. Blood 2005; 106: 2252–2258.

    Article  CAS  PubMed  Google Scholar 

  63. Barnden MJ, Allison J, Heath WR, Carbone FR . Defective TCR expression in transgenic mice constructed using cDNA-based alpha- and beta-chain genes under the control of heterologous regulatory elements. Immunol Cell Biol 1998; 76: 34–40.

    Article  CAS  PubMed  Google Scholar 

  64. Van Meirvenne S, Dullaers M, Heirman C, Straetman L, Michiels A, Thielemans K . In vivo depletion of CD4(+)CD25(+) regulatory T cells enhances the antigen-specific primary and memory CTL response elicited by mature mRNA-electroporated dendritic cells. Mol Ther 2005; 12: 922–932.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Elsy Vaeremans and Margareth Verbuyst for DNA preparations, Julie De Meester for help with the tumor experiments and Delphine Baup for the supply of the OT-II mice and the GK1.5 antibody. MD was supported by a grant from the Fund for Scientific Research Flanders (FWO-Vlaanderen). This work was further supported by grants to K T from the FWO-Vlaanderen, the IWT, the Ministry of Science (IUAP/PAI), the Fortis Bank and the ‘Belgische Federatie voor Kankerbestrijding’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Thielemans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dullaers, M., Meirvenne, S., Heirman, C. et al. Induction of effective therapeutic antitumor immunity by direct in vivo administration of lentiviral vectors. Gene Ther 13, 630–640 (2006). https://doi.org/10.1038/sj.gt.3302697

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302697

Keywords

This article is cited by

Search

Quick links