Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chick embryo lethal orphan virus can be polymer-coated and retargeted to infect mammalian cells

Abstract

Non-human adenovirus vectors have attractive immunological properties for gene therapy but are frequently restricted by inefficient transduction of human target cells. Using chicken embryo lethal orphan (CELO) virus, we employed a nongenetic mechanism of polymer coating and retargeting with basic fibroblast growth factor (bFGF-pc-CELOluc), a strategy that permits efficient tropism modification of human adenovirus. bFGF-pc-CELOluc showed efficient uptake and transgene expression in chick embryo fibroblasts (CEF), and increased levels of binding and internalization in a variety of human cell lines. Transgene expression was also greater than unmodified CELOluc in PC-3 human prostate cells, although the specific activity (RLU per internalized viral genome) was decreased. In CEF, the specific activity of bFGF-pc-CELOluc was considerably higher than in the human prostate cell line PC-3. Retargeted virus was fully resistant to inhibition by human serum with known adenovirus-neutralizing activity in vitro, while in mice CELOluc was cleared less rapidly from the blood than Adluc following i.v. administration in the presence of adenovirus neutralizing serum. Polymer coating and retargeting with bFGF further reduced rates of clearance for both viruses, suggesting protection against both neutralizing and opsonizing factors. The data indicate that CELO virus may be retargeted to infect human cells via alternative, potentially disease-specific, receptors and resist the effects of pre-existing humoral immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Bergelson JM, Cunningham JA, Drouguett G, Kurt-Jones EA, Krithivas A, Hong JS et al. Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science 1997; 275: 1320–1323.

    Article  CAS  Google Scholar 

  2. Bergelson JM . Receptors mediating adenovirus attachment and internalisation. Biochem Pharmacol 1999; 57: 975–979.

    Article  CAS  Google Scholar 

  3. Wickham TJ, Mathias P, Cheresh DA, Nemerow GR . Integrins αvβ3 and αvβ5 promote adenovirus internalisation but not virus attachment. Cell 1993; 73: 309–319.

    Article  CAS  Google Scholar 

  4. Chirmule N, Propert K, Magosin S, Qian Y, Qian R, Wilson J . Immune responses to adenovirus and adeno-associated virus in humans. Gene Therapy 1999; 6: 1574–1583.

    Article  CAS  Google Scholar 

  5. Stallwood Y, Fisher KD, Gallimore PH, Mautner V . Neutralisation of adenovirus infectivity by ascitic fluid from ovarian cancer patients. Gene Therapy 2000; 7: 637–643.

    Article  CAS  Google Scholar 

  6. Zheng B, Mittal SK, Graham FL, Prevec L . The E1 sequence of bovine adenovirus type 3 and complementation of human adenovirus type 5 E1A function in bovine cells. Virus Res 1994; 31: 163–186.

    Article  CAS  Google Scholar 

  7. Mittal SK, Prevec L, Graham FL, Babiuk LA . Development of a bovine adenovirus type 3-based expression vector. J Gen Virol 1995; 76: 93–102.

    Article  CAS  Google Scholar 

  8. Reddy PS, Idamakanti N, Chen Y, Whale T, Babiuk LA, Mehtali M et al. Replication-defective bovine adenovirus type 3 as an expression vector. J Virol 1999; 73: 9137–9144.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Moffatt S, Hays J, HogenEsch H, Mittal SK . Circumvention of vector-specific neutralizing antibody response by alternating use of human and non-human adenoviruses: implications in gene therapy. Virology 2000; 272: 159–167.

    Article  CAS  Google Scholar 

  10. Baxi MK, Deregt D, Robertson J, Babiuk LA, Schlapp T, Tikoo SK . Recombinant bovine adenovirus type 3 expressing bovine diarrhoea virus glycoprotein E2 induces an immune response in cotton rats. Virology 2000; 278: 234–243.

    Article  CAS  Google Scholar 

  11. Baxi MK, Robertson J, Babiuk LA, Tikoo SK . Mutational analysis of early region 4 of bovine adenovirus type 3. Virology 2001; 290: 153–163.

    Article  CAS  Google Scholar 

  12. van Olphen AL, Mittal SK . Development and characterisation of bovine × human hybrid cell lines that efficiently support the replication of both wild-type bovine and human adenoviruses and those with E1 deleted. J Virol 2002; 75: 5882–5892.

    Article  Google Scholar 

  13. Wu QH, Tikoo SK . Altered tropism of recombinant bovine adenovirus type-3 expressing chimeric fiber. Virus Res 99; 1: 9–15.

    Google Scholar 

  14. Renaut L, Colin M, Leite JP, Benko M, D’Halluin JC . Abolition of hCAR-dependent cell tropism using fibre knobs of atadenovirus serotypes. Virology 2004; 321: 189–204.

    Article  CAS  Google Scholar 

  15. Vrati S, Macavoy ES, Xu ZZ, Smole C, Boyle DB, Both GW . Construction and transfection of ovine adenovirus genomic clones to rescue modified viruses. Virology 1996; 220: 200–203.

    Article  CAS  Google Scholar 

  16. Xu ZZ, Hyatt D, Boyle DB, Both GW . Construction of ovine adenovirus recombinants by gene insertion or deletion of related terminal region sequences. Virology 1997; 230: 62–71.

    Article  CAS  Google Scholar 

  17. Hofmann C, Loser P, Cichon G, Arnold W, Both GW, Strauss M . Ovine adenovirus vectors overcome pre-existing humoral immunity against human adenoviruses in vivo. J Virol 1999; 73: 6930–6936.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Xu ZZ, Nevels M, MacAvoy ES, Lockett LJ, Curiel D, Dobner T et al. An ovine adenovirus vector lack transforming ability in cells that are transformed by Ad5 E1A/B sequences. Virology 2000; 270: 162–172.

    Article  CAS  Google Scholar 

  19. Loser P, Hillgenberg M, Arnold W, Both GW, Hofmann C . Ovine adenovirus vectors mediate efficient gene transfer to skeletal muscle. Gene Therapy 2000; 7: 1491–1498.

    Article  CAS  Google Scholar 

  20. Lockett LJ, Both GW . Complementation of a defective human adenovirus by an otherwise incompatible ovine adenovirus recombinant carrying a functional E1A gene. Virology 2002; 294: 333–341.

    Article  CAS  Google Scholar 

  21. Kumin D, Hofmann C, Rudolph M, Both GW, Loser P . Biology of ovine adenovirus infection of non-permissive cells. J Virol 2002; 76: 10882–10893.

    Article  CAS  Google Scholar 

  22. Voeks D, Martiniello-Wilks R, Madden V, Smith K, Bennetts E, Both GW et al. Gene therapy for prostate cancer delivered by ovine adenovirus and mediated by purine nucleoside phosphorylase and fludarabine in mouse models. Gene Therapy 2002; 9: 759–768.

    Article  CAS  Google Scholar 

  23. Glasgow JN, Both GW, Krasnykh VN, Curiel DT . A chimeric adenovirus vector expressing an ovine adenovirus fiber has CAR-independent tropism. Mol Ther 2003; 7: 498.

    Article  Google Scholar 

  24. Martinello-Wilks R, Dane A, Voeks DJ, Jeyakumar G, Mortensen E, Shaw JM et al. Gene-directed enzyme prodrug therapy for prostate cancer in a mouse model that imitates the development of human disease. J Gene Med 2004; 6: 43–54.

    Article  Google Scholar 

  25. Both GW . Ovine atadenovirus: a review of its biology, biosafety profile and application as a gene delivery vector. Immunol Cell Biol 2004; 82: 189–195.

    Article  CAS  Google Scholar 

  26. Farina SF, Gao GP, Xiang ZQ, Rux JJ, Burnett RM, Alvira MR et al. Replication-defective vector based on a chimpanzee adenovirus. J Virol 2001; 75: 11603–11613.

    Article  CAS  Google Scholar 

  27. Cohen CJ, Xiang ZQ, Gao GP, Ertl HC, Wilson JM, Bergelson JM . Chimpanzee adenovirus CV-68 adapted as a gene delivery vector interacts with the coxsackie and adenovirus receptor. J Gen Virol 2002; 83: 151–155.

    Article  CAS  Google Scholar 

  28. Roy S, Gao G, Lu Y, Zhou X, Lock M, Calcedo R et al. Characterization of a family of chimpanzee adenoviruses and development of molecular clones for gene transfer vectors. Hum Gene Ther 2004; 15: 519–530.

    Article  CAS  Google Scholar 

  29. Klonjkowski B, Gilardi-Hebenstreit P, Hadchouel J, Randrianarison V, Boutin S, Yeh P et al. A recombinant E1-deleted canine adenoviral vector capable of transduction and expression of a transgene in human derived cells and in vivo. Hum Gene Ther 1997; 8: 2103–2115.

    Article  CAS  Google Scholar 

  30. Soudais C, Boutin S, Hong SS, Chillon M, Danos O, Bergelson JF et al. Canine adenovirus type 2 attachment and internalisation: coxsackie-adenovirus receptor, alternative receptors and an RGD-independent pathway. J Virol 2000; 74: 10639–10649.

    Article  CAS  Google Scholar 

  31. Soudais C, Laplace-Builhe C, Kissa K, Kremer EJ . Preferential transduction of neurons by canine adenovirus vectors and their efficient retrograde transport in vivo. FASEB J 2001; 15: U35–U57.

    Article  Google Scholar 

  32. Chillon M, Kremer EJ . Trafficking and propagation of canine adenovirus vectors lacking a known integrin-interacting motif. Hum Gene Ther 2001; 12: 1815–1823.

    Article  CAS  Google Scholar 

  33. Peltekian E, Garcia L, Danos O . Neurotropism and retrograde axonal transport of a canine adenovirus vector: a tool for targeting key structures undergoing neurodegenerative processes. Mol Ther 2002; 5: 25–32.

    Article  CAS  Google Scholar 

  34. Hemminki A, Kanerva A, Kremer EJ, Bauerschmitz GJ, Smith BF, Liu B et al. A canine conditionally replicating adenovirus for evaluating oncolytic virotherapy in a syngeneic animal model. Mol Ther 2003; 7: 163–173.

    Article  CAS  Google Scholar 

  35. Soudais C, Skander N, Kremer EJ . Long-term in vivo transduction of neurons throughout the rat central nervous system using novel helper-dependent CAV-2 vectors. FASEB J 2003; 17: U257–U276.

    Google Scholar 

  36. Glasgow JN, Kremer EJ, Hemminki A, Siegal GP, Douglas JT, Curiel DT . An adenovirus vector with a chimeric fiber derived from canine adenovirus type 2 displays novel tropism. Virol 2004; 324: 103–116.

    Article  CAS  Google Scholar 

  37. Michou AI, Lehrmann H, Saltik M, Cotten M . Mutational analysis of the avian adenovirus CELO, which provides a basis for gene delivery vectors. J Virol 1999; 73: 1399–1410.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Tan PK, Michou AI, Bergelson JM, Cotten M . Defining CAR as a cellular receptor for the avian adenovirus CELO using a genetic analysis of the two viral fibre proteins. J Gen Virol 2001; 82: 1465–1472.

    Article  CAS  Google Scholar 

  39. Logunov DY, Illyinskaya GV, Cherenova LV, Verhovskaya LV, Shmarov MM, Chumakov PM et al. Restoration of p53 tumor-suppressor activity in human tumor cells in vitro and in their xenografts in vivo by recombinant avian adenovirus CELO-p53. Gene Therapy 2004; 11: 79–84.

    Article  CAS  Google Scholar 

  40. Cherenova LV, Logunov DY, Shashkova EV, Shmarov MM, Verkhovskaya LV, Neugodova GL et al. Recombinant avian adenovirus CELO expressing the human interleukin-2: characterisation in vitro, in ovo and in vivo. Virus Res 2004; 100: 257–261.

    Article  CAS  Google Scholar 

  41. Yates V, Fry D . Observations on a chick embryo lethal orphan (CELO) virus. Am J Vet Res 1957; 18: 657–660.

    CAS  PubMed  Google Scholar 

  42. Li P, Bellett A, Parish C . DNA-binding proteins of chick embryo lethal orphan virus: lack of complementation between early proteins of avian and human adenoviruses. J Virol 1984; 65: 1817–1825.

    Article  CAS  Google Scholar 

  43. Laver WG, Younghusband HB, Wrigley NG . Purification and properties of chick embryo lethal orphan virus (an avian adenovirus). Virology 1971; 45: 598–614.

    Article  CAS  Google Scholar 

  44. Gelderblom H, Maiche-Lauppe I . The fibers of fowl adenoviruses. Arch Virol 1982; 72: 289–298.

    Article  CAS  Google Scholar 

  45. Chiocca S, Kurzbauer R, Schffner G, Baker A, Mautner V, Cotton M . The complete DNA sequence and genomic organization of the avian adenovirus CELO. J Virol 1996; 70: 2939–2949.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Fisher KD, Stallwood Y, Green NK, Ulbrich K, Mautner V, Seymour LW . Polymer-coated adenovirus permits efficient retargeting and evades neutralising antibodies. Gene Therapy 2001; 8: 341–348.

    Article  CAS  Google Scholar 

  47. Plotnikov AN, Schlessinger J, Hubbard SR, Mohammadi M . Structural basis for FGF receptor dimerization and activation. Cell 1999; 98: 641–650.

    Article  CAS  Google Scholar 

  48. McFerrin JB, Adair B, Connor TJ . Adenovirus antigens (CELO, QBV, GAL). Am J Vet Res 1975; 36: 527–529.

    Google Scholar 

  49. Van Rooijen N, Kors N, van der Ende M, Dijkstra CD . Depletion and repopulation of macrophages in spleen and liver of rat after intravenous treatment with liposome-encapsulated dichloromethylene diphosphate. Cell Tissue Res 1990; 260: 215–222.

    Article  CAS  Google Scholar 

  50. Miyazawa N, Crystal RG, Leopold PL . Adenovirus serotype 7 retention in a late endosomal compartment prior to cytosol escape is modulated by fiber protein. J Virol 2001; 75: 1387–1400.

    Article  CAS  Google Scholar 

  51. Shayakhmetov DM, Li ZY, Ternovoi V, Gagger A, Ghatwan H, Lieber A . The interaction between the fiber knob domain and the cellular attachment receptor determines the intracellular trafficking route of adenoviruses. J Virol 2003; 77: 3712–3723.

    Article  CAS  Google Scholar 

  52. Shashkova EV, Cherenova LV, Kazansky DB, Doronin K . Avian adenovirus vector CELO-TK displays anticancer activity in human cells and suppresses established murine melanoma tumors. Cancer Gene Ther 2005; 12: 617–626.

    Article  CAS  Google Scholar 

  53. Doukas J, Hoganson DK, Ong M, Ying W, Lacey DL, Baird A et al. Retargeted delivery of adenoviral vectors through fibroblast growth fact receptors involves unique cellular pathways. FASEB J 1999; 13: 1459–1466.

    Article  CAS  Google Scholar 

  54. Lehrmann H, Cotton M . Characterization of CELO virus proteins that modulate the pRb/E2F pathway. J Virol 1999; 73: 6517–6525.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Cussenot O, Berthon P, Berger R, Mowszowicz I, Faille A, Hojman F et al. Immortalization of human adult normal prostate epithelial cells by liposomes containing large T-SV40 gene. J Urol 1991; 146: 881–886.

    Article  CAS  Google Scholar 

  56. Cussenot O, Berthon P, Cochand-Priollet B, Maitland NJ, Le Duc A . Immunocytochemical comparison of cultured normal epithelial prostatic cells with prostatic tissue sections. Exp Cell Res 1994; 214: 83–92.

    Article  CAS  Google Scholar 

  57. Berthon P, Cussenot O, Hopwood L, Leduc A, Maitland NJ . Functional expression of SV40 in normal human epithelial and fibroblastic cells – differentiation pattern of non-tumorigenic cell lines. Int J Oncol 1995; 6: 333–343.

    CAS  PubMed  Google Scholar 

  58. Murakami P, McCaman MT . Quantitation of adenovirus DNA and virus particles with the Pico Green fluorescent dye. Anal Biochem 1999; 274: 288.

    Article  Google Scholar 

  59. Haase AT, Mautner V, Pereira HG . The immunogenicity of adenovirus structural proteins. J Immunol 1972; 108: 483–485.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We specially thank Sue Phipps, Elizabeth Hodgkins, Oliver Hayward and Sarah Hale for assistance with Ad5 production. We are especially grateful to Norman Maitland for supplying the PNT1a and PNT-2 prostate cell lines and for Matt Cotten for the CELO virus (AIM 46). Funding from the European Union framework V research grant supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Stevenson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevenson, M., Boos, E., Herbert, C. et al. Chick embryo lethal orphan virus can be polymer-coated and retargeted to infect mammalian cells. Gene Ther 13, 356–368 (2006). https://doi.org/10.1038/sj.gt.3302655

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302655

Keywords

This article is cited by

Search

Quick links