Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Intramuscular immunization with plasmid coexpressing tumour antigen and Flt-3L results in potent tumour regression

Abstract

Dendritic cells (DC) are professional antigen-presenting cells capable of initiating a potent primary immune response, making them an attractive target for cancer immunotherapy. Flt-3 ligand (Flt-3L) is a haematopoietic growth factor that efficiently induces DC expansion in vivo. To achieve a more efficient and effective method of priming tumour-specific, DC-mediated immune response, we generated a DNA vaccine comprising both human Flt-3L and the tumour antigen, MUC-1 (pNGVL-hFLex-MUC-1). We report that pNGVL-hFLex-MUC-1 is able to induce antigen-specific CTL immunity in vivo, resulting in a potent anti-tumour response, and that the Flt-3L component is essential to the efficacy of the DNA vaccine. Moreover, the route of immunization is critical in determining the type of immune response generated; intramuscular (i.m.) immunization with pNGVL-hFLex-MUC-1 conferred tumour protection in contrast to poor response with hydrodynamic-based intravenous delivery. Post-i.m. immunization, we observed a massive infiltration of mononuclear cells to the injection site, comprised predominantly of CD11c+/CD8α DC. Therefore, we propose that Flt-3L acts as an adjuvant to recruit DC, thereby priming the anti-tumour response. However, systemic expansion of DC prior to immunization did not enhance the specific cellular response, suggesting that it is in situ recruitment or expansion of DC that is critical for pNGVL-hFLex-MUC-1 potency.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ardavin C . Origin, precursors and differentiation of mouse dendritic cells. Nat Rev Immunol 2003; 3: 582–590.

    Article  CAS  PubMed  Google Scholar 

  2. Mosca PJ, Clay TM, Kim LH, Morse MA . Current status of dendritic cell immunotherapy of malignancies. Int Rev Immunol 2003; 22: 255–281.

    Article  CAS  PubMed  Google Scholar 

  3. Maraskovsky E, Brasel K, Teepe M, Roux ER, Lyman SD, Shortman K et al. Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J Exp Med 1996; 184: 1953–1962.

    Article  CAS  PubMed  Google Scholar 

  4. Lyman SD, James L, Johnson L, Brasel K, de Vries P, Escobar SS et al. Cloning of the human homologue of the murine flt3 ligand: a growth factor for early hematopoietic progenitor cells. Blood 1994; 83: 2795–2801.

    CAS  PubMed  Google Scholar 

  5. Maraskovsky E, Daro E, Roux E, Teepe M, Maliszewski CR, Hoek J et al. In vivo generation of human dendritic cell subsets by Flt3 ligand. Blood 2000; 96: 878–884.

    CAS  PubMed  Google Scholar 

  6. Lynch DH, Andreasen A, Maraskovski E, Whitmore J, Miller RE, Schuh JCL . Flt3 ligand induces tumor regression and antitumor immune responses in vivo. Nat Med 1997; 3: 625–631.

    Article  CAS  PubMed  Google Scholar 

  7. Chen K, Braun S, Lyman S, Fan Y, Traycoff CM, Wiebke EA et al. Antitumor activity and immunotherapeutic properties of Flt3-ligand in a murine breast cancer model. Cancer Res 1997; 57: 3511–3516.

    CAS  PubMed  Google Scholar 

  8. Esche C, Subbotin VM, Maliszewski C, Lotze MT, Shurin MR . FLT3 ligand administration inhibits tumor growth in murine melanoma and lymphoma. Cancer Res 1998; 58: 380–383.

    CAS  PubMed  Google Scholar 

  9. McKenna HJ, Stocking KL, Miller RE, Brasel K, De Smedt T, Maraskovsky E et al. Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 2000; 95: 3489–3497.

    CAS  PubMed  Google Scholar 

  10. Pulendran B, Lingappa J, Kennedy MK, Smith J, Teepe M, Rudensky A et al. Developmental pathways of dendritic cells in vivo: distinct function, phenotype, and localization of dendritic cell subsets in FLT3 ligand-treated mice. J Immunol 1997; 159: 2222–2231.

    CAS  PubMed  Google Scholar 

  11. Tang DC, DeVit M, Johnston SA . Genetic immunization is a simple method for eliciting an immune response. Nature 1992; 356: 152–154.

    Article  CAS  PubMed  Google Scholar 

  12. Tascon RE, Colston MJ, Ragno S, Stavropoulos E, Gregory D, Lowrie DB . Vaccination against tuberculosis by DNA injection. Nat Med 1996; 2: 888–892.

    Article  CAS  PubMed  Google Scholar 

  13. Xu D, Liew FY . Protection against leishmaniasis by injection of DNA encoding a major surface glycoprotein, gp63, of L. major. Immunology 1995; 84: 173–176.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Pertmer TM . Gene gun-based nucleic acid immunization: elicitation of humoral and cytotoxic T lymphocyte responses following epidermal delivery of nanogram quantities of DNA. Vaccine 1995; 13: 1427–1430.

    Article  CAS  PubMed  Google Scholar 

  15. Feltquate DM, Heaney S, Webster RG, Robinson HL . Different T helper cell types and antibody isotypes generated by saline and gene gun DNA immunization. J Immunol 1997; 158: 2278–2284.

    CAS  PubMed  Google Scholar 

  16. Ito K, Ito K, Shinohara N, Kato S . DNA immunization via intramuscular and intradermal routes using a gene gun provides different magnitudes and durations on immune response. Mol Immunol 2003; 39: 847–854.

    Article  CAS  PubMed  Google Scholar 

  17. Gurunathan S, Klinman DM, Seder RA . DNA vaccines: immunology, application, and optimization. Annu Rev Immunol 2000; 18: 927–974.

    Article  CAS  PubMed  Google Scholar 

  18. Morel PA, Falkner D, Plowey J, Larregina AT, Falo LD . DNA immunisation: altering the cellular localisation of expressed protein and the immunisation route allows manipulation of the immune response. Vaccine 2004; 22: 447–456.

    Article  CAS  PubMed  Google Scholar 

  19. Corr M, Lee DJ, Carson DA, Tighe H . Gene vaccination with naked plasmid DNA: mechanism of CTL priming. J Exp Med 1996; 184: 1555–1560.

    Article  CAS  PubMed  Google Scholar 

  20. Fong CL, Hui KM . Generation of potent and specific cellular immune responses via in vivo stimulation of dendritic cells by pNGVL3-hFLex plasmid DNA and immunogenic peptides. Gene Therapy 2002; 9: 1127–1138.

    Article  CAS  PubMed  Google Scholar 

  21. Teleshova N, Jones J, Kenney J, Purcell J, Bohm R, Gettie A et al. Short-term Flt3L treatment effectively mobilizes functional macaque dendritic cells. J Leukoc Biol 2004; 75: 1102–1110.

    Article  CAS  PubMed  Google Scholar 

  22. Fu TM, Ulmer JB, Caulfield MJ, Deck RR, Friedman A, Wang S et al. Priming of cytotoxic T lymphocytes by DNA vaccines: requirement for professional antigen presenting cells and evidence for antigen transfer from myocytes. Mol Med 1997; 3: 362–371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hohlfeld R, Engel AG . The immunobiology of muscle. Immunol Today 1994; 15: 269–274.

    Article  CAS  PubMed  Google Scholar 

  24. Mwangi W, Brown WC, Lewin HA, Howard CJ, Hope JC, Baszler TV et al. DNA-encoded fetal liver tyrosine kinase 3 ligand and granulocyte macrophage-colony-stimulating factor increase dendritic cell recruitment to the inoculation site and enhance antigen-specific CD4+ T cell responses induced by DNA vaccination of outbred animals. J Immunol 2002; 169: 3837–3846.

    Article  CAS  PubMed  Google Scholar 

  25. Vlad AM, Kettel JC, Alajez NM, Carlos CA, Finn OJ . MUC1 immunobiology: from discovery to clinical applications. Adv Immunol 2004; 82: 249–293.

    Article  CAS  PubMed  Google Scholar 

  26. Brode S, Macary PA . Cross-presentation: dendritic cells and macrophages bite off more than they can chew!. Immunology 2004; 112: 345–351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Casares S, Inaba K, Brumeanu TD, Steinman RM, Bona CA . Antigen presentation by dendritic cells after immunization with DNA encoding a major histocompatibility complex class II-restricted viral epitope. J Exp Med 1997; 186: 1481–1486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Takashima A, Morita A . Dendritic cells in genetic immunization. J Leukoc Biol 1999; 66: 350–356.

    Article  CAS  PubMed  Google Scholar 

  29. Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A et al. Direct gene transfer into mouse muscle in vivo. Science 1990; 247: 1465–1468.

    Article  CAS  PubMed  Google Scholar 

  30. Davis HL, Millan CL, Watkins SC . Immune-mediated destruction of transfected muscle fibers after direct gene transfer with antigen-expressing plasmid DNA. Gene Therapy 1997; 4: 181–188.

    Article  CAS  PubMed  Google Scholar 

  31. Mueller DL, Jenkins MK, Schwartz RH . Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu Rev Immunol 1989; 7: 445–480.

    Article  CAS  PubMed  Google Scholar 

  32. Doe B, Selby M, Barnett S, Baenziger J, Walker CM . Induction of cytotoxic T lymphocytes by intramuscular immunization with plasmid DNA is facilitated by bone marrow-derived cells. Proc Natl Acad Sci USA 1996; 93: 8578–8583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huang AY, Golumbek P, Ahmadzadeh M, Jaffee E, Pardoll D, Levitsky H . Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science 1994; 264: 961–965.

    Article  CAS  PubMed  Google Scholar 

  34. Staerz UD, Karasuyama H, Garner AM . Cytotoxic T lymphocytes against a soluble protein. Nature 1987; 329: 449–451.

    Article  CAS  PubMed  Google Scholar 

  35. Carbone FR, Bevan MJ . Class I-restricted processing and presentation of exogenous cell-associated antigen in vivo. J Exp Med 1990; 171: 377–387.

    Article  CAS  PubMed  Google Scholar 

  36. Rock KL . A new foreign policy: MHC class I molecules monitor the outside world. Immunol Today 1996; 17: 131–137.

    Article  CAS  PubMed  Google Scholar 

  37. Dyer CM, Zhan Y, Brady JL, Carbone FR, Smyth MJ, Lew AM . Unexpectedly, induction of cytotoxic T lymphocytes enhances the humoral response after DNA immunization. Blood 2004; 103: 3073–3075.

    Article  CAS  PubMed  Google Scholar 

  38. Peachman KK, Rao M, Alving CR . Immunization with DNA through the skin. Methods 2003; 31: 232–242.

    Article  CAS  PubMed  Google Scholar 

  39. Boyle JS, Silva A, Brady JL, Lew AM . DNA immunization: induction of higher avidity antibody and effect of route on T cell cytotoxicity. Proc Natl Acad Sci USA 1997; 26: 14626–14631.

    Article  Google Scholar 

  40. Ludewig B, Krebs P, Junt T, Metters H, Ford NJ, Anderson RM et al. Determining control parameters for dendritic cell–cytotoxic T lymphocyte interaction. Eur J Immunol 2004; 34: 2407–2418.

    Article  CAS  PubMed  Google Scholar 

  41. Sun X, Hodge LM, Jones HPO, Tabor L, Simecka JW . Co-expression of granulocyte-macrophage colony-stimulating factor with antigen enhances humoral and tumor immunity after DNA vaccination. Vaccine 2002; 20: 1466–1474.

    Article  CAS  PubMed  Google Scholar 

  42. Westermann J, Nguyen-Hoai T, Mollweide A, Richter G, Schmetzer O, Kim HJ et al. Flt-3 ligand as adjuvant for DNA vaccination augments immune responses but does not skew TH1/TH2 polarization. Gene Therapy 2004; 11: 1048–1056.

    Article  CAS  PubMed  Google Scholar 

  43. McNeel DG, Knutson KL, Schiffman K, Davis DR, Caron D, Disis ML . Pilot study of an HLA-A2 peptide vaccine using flt3 ligand as a systemic vaccine adjuvant. J Clin Immunol 2003; 23: 62–72.

    Article  CAS  PubMed  Google Scholar 

  44. Apostolopoulos V, McKenzie IF . Cellular mucins: targets for immunotherapy. Crit Rev Immunol 1994; 14: 293–309.

    Article  CAS  PubMed  Google Scholar 

  45. Carbone FR, Moore MW, Sheil JM, Bevan MJ . Induction of cytotoxic T lymphocytes by primary in vitro stimulation with peptides. J Exp Med 1988; 167: 1767–1779.

    Article  CAS  PubMed  Google Scholar 

  46. Wu X, He Y, Falo Jr LD, Hui KM, Huang L . Regression of human mammary adenocarcinoma by systemic administration of a recombinant gene encoding the hFlex-TRAIL fusion protein. Mol Ther 2001; 3: 368–374.

    Article  CAS  PubMed  Google Scholar 

  47. Liu F, Song Y, Liu D . Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Therapy 1999; 6: 1258–1266.

    Article  CAS  PubMed  Google Scholar 

  48. Taswell C . Limiting dilution assays for the determination of immunocompetent cell frequencies. I. Data analysis. J Immunol 1981; 126: 1614–1619.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Medical Research Council of Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K M Hui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fong, C., Mok, CL. & Hui, K. Intramuscular immunization with plasmid coexpressing tumour antigen and Flt-3L results in potent tumour regression. Gene Ther 13, 245–256 (2006). https://doi.org/10.1038/sj.gt.3302639

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302639

Keywords

This article is cited by

Search

Quick links