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Promising new results in a well-
established murine model of trans-
plantable prostate cancer could lead
to strategies that seek to exploit a
fourth pathway for the gene therapy
of cancer.

Cancer is fundamentally a genetic
disorder associated with modifica-
tion of genes that block apoptotic
pathways, thereby causing abnormal
necrotic cell death and expression of
genes which enable unscheduled cell
growth, particularly in nominal can-
cer stem cells, which have learned
and inculcated these dark secrets.1

Thus, much of the excitement about
gene therapy for cancer at its begin-
ning posited developing strategies to
replace these altered genes (the first
pathway) thereby returning a normal
phenotype. Although attractive, this
notion was limited by the bilateral
Achilles heels of targeting (getting
the right genes into the right cells in
the right places) and the irksome
immune response to the more effec-
tive viral delivery systems. Perhaps
the most intriguing current strategy
of this ilk is to deliver antisense
constructs to tumors to limit expres-
sion of antiapoptotic genes such as
Bcl-2, which has indeed met with
some success in the clinic.2

A second pathway is the use of
genetic constructs to confer novel
properties on a cell, often to elicit an
effective immune response to the
tumor using cytokines or antigens,
an approach that our group and
others have championed for quite
some years3–10 with a modicum of
success. For example, our studies in
the late 1980s (the first gene therapy
studies in the United States) focused
on the adoptive transfer of geneti-
cally modified antitumor T cells first
designed solely to mark them,5 and
subsequently to use them to deliver
additional gene products such as
TNFa. The importance of such at-
tempts may have been primarily in
elucidating the underlying immune
mechanisms that are complex, highly
evolved, remarkably redundant and

synergistic. The application of GM-
CSF as an immune adjuvant, for
example, was first identified using
such gene transfer strategies11 and
we can imagine future gene transfer
studies using newly identified cyto-
kines and costimulatory molecules to
similarly help us define the biology
of these factors. The third pathway
of cancer gene therapy, and actually
one of the first applied clinically, is to
use nominally tumor-selective
viruses that mediate oncolytic effects
on the tumor.12

A fourth emergent pathway for
cancer gene therapy focuses on
strategies designed to modify the
biology of the tumor-reactive
inflammatory cells. Zhang et al.13

new study, recently published in
Cancer Research, is an excellent
example of one such strategy to
make T cells resistant to the altered
and nominally disordered tumor
microenvironment (see below). The
authors adoptively transferred T
cells which recognized the prostatic
tumor, but that had been genetically
modified to bind but not respond
to TGFb. The notion that TGFb is
important in cancer has a long
history, with many tumors being
able to both produce it and limit
their own responsiveness to it by
downregulating receptors. The im-
munologic consequences of local
TGFb elaboration by the tumor most
likely involve both direct and indir-
ect immunosuppression as well as
the ability of TGFb to promote tissue
repair and wound healing. TGFb
limits NK and T-cell production of
IFNg, thereby checking the so-called
TH1 response. Limiting this re-
sponse, in turn, leads to inhibition
of tumor growth and enhancment of
the cytolytic response to the tumor.
TGFb is delivered not only by the
tumor but likely also by the resplen-
dent and renascent T-suppressor cell,
found abundantly within various
tumors.14,15 This same group first
tested the strategy of blocking TGFb
effects by engineering bone marrow

cells to express a dominant-negative
receptor in all emergent T cells.
However, this strategy could be
dangerous because it could lead to
autoimmune T cells as well as anti-
tumor T cells arising.16 By contrast,
the new strategy of introducing TGFb
into tumor-specific T cells is more
likely to be clinically applicable.

There is strong evidence from
murine models and inflammatory
infiltrate, which indicates that early
events in tumorigenesis are asso-
ciated with dendritic cell (DC) and
T-cell infiltrates. It is clear then that
cancers in adults arise most often as
the end stage of chronic inflamma-
tion.17,18 Cancer in adults is thus an
immunologic disorder, which gener-
ates multiple neoepitopes and com-
mon tumor antigens.

These findings fueled burgeoning
academic and biotechnology indus-
tries that were designed to develop
antigen and cytokine therapies, some
as gene therapies, based on the very
effective therapies in murine models.
The average epithelial neoplasm has
over 10 000 mutations as a conse-
quence of emergent genomic in-
stability, enabling a cornucopia of
antigens for exploration. One exam-
ple of such a cancer is prostate
cancer, the fifth highest cause of
cancer death in the USA. Prostate
cancers13,19 develop resistance to
TGFb during their development20

from a variety of mechanisms in-
cluding downregulation of the re-
ceptor itself or associated signaling
pathways during their inflammatory
genesis. This increased resistance
protects them from the TGFb elabo-
rated in the tumor microenviron-
ment. Not so for the susceptible T
cell. Alternatives to genetically mod-
ifying the T cells to protect them
from tumor-elaborated TGFb are to
apply reagents that modify the tu-
mor TGFb receptors themselves or to
antagonize the local release by anti-
sense constructs or antibodies.21,22

Although intriguing, the global role
of TGFb and its ablation, being
associated with lethal inflammation
in murine models as well as its
critical role in tissue remodeling
and healing, limit enthusiasm for
this strategy. Modification of the T
cell confers specificity (through the
cognate T-cell receptors specific for
cancer antigen/MHC complexes)
and limits the biologic effects of
these cells nominally to the tumor
itself. So it appears that TGFb in the
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tumor microenvironment might in-
deed modify the ability of T cells to
mediate their effector function.23

The tumor microenvironment is
replete with the ancient cytokines
TGFb and HMGB1, which are im-
portant in wound repair and inflam-
mation. Intriguingly, TGFb is highly
conserved, with only a single amino-
acid difference between man and
mouse. This molecule modifies in-
flammation in important ways.24,25

Similarly, the nuclear transcriptional
regulatory factor, high-mobility
group B1 (HMGB1), appears to pro-
mote inflammation when released
from necrotic cells26 and to drive
the initial events in eliciting immune
reactivity. HMGB1 differs only in
two amino acids when comparing
mouse and man. Like TGFb, HMGB1
is probably in an evolutionary box
that it cannot get out of. So both
these cytokines are critically impor-
tant for tissue homeostasis and the
response to injury or damage.

To sensibly coordinate and direct
cancer therapies, we need to recog-
nize the critical role of these cyto-
kines in normal tissues and the
response to injury, while (Figure 1)
promoting tumor eradication (1), eli-
citing an immune response (2), and/or
promoting immune effector function
(3). Future strategies will need to
remain aware of these three coordinate
approaches when confronting the pro-
blem of cancer. Nascent gene therapies
should similarly pay heed to these
notions, applying all three approaches
coordinately when possible. ’
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Therapeutic Triangle
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Figure 1 Cancer therapeutic triangle. The past 50 years of evolving cancer therapies have
primarily focused on means of either locally extirpating cancer (1) by surgical excision or
radiation therapy. Adjuvant, therapeutic or, increasingly, neoadjuvant strategies to elicit
apoptotic (non-necrotic) cell death most frequently uses chemotherapeutic agents, most
commonly platinum-based regimens, often with taxanes or fluoro-pyrimidines. An
alternative strategy that uses direct application of oncolytic viruses has been dealt with
extensively in this journal and others.12,27–32 One of the major issues with this approach is
that TGFb33 and HMGB134–37 often mediate the therapeutic response: paradoxically, these
molecules can also suppress immune reactivity and promote reparative cell growth with
associated angiogenesis and stromagenesis. Gene replacement or antisense strategies are
similarly designed to enhance apoptotic death of tumors. Immune approaches that have
been explored in earnest for 20 years typically try to elicit a novel immune response (2) by
targeting the afferent limb using peptide or dendritic cell (DC) vaccines, systemic delivery
of interferon a or use of adenoviral, canary pox or other viral vectors to deliver antigens or
cytokines. The emergent and perhaps most interesting approaches predicate an already
established immune response. These strategies are designed to promote survival and
function of the (3) efferent limb of the immune response, which is deficient in the setting of
the tumor microenvironment, perhaps as a consequence of HMGB1 and TGFb local
elaboration. Interleukin 2 administration likely overcomes some of the effects of suppressor
T cells, which can be supplemented by antibodies to important immunological molecules
regulating the immune response including antibodies to CTLA4, CD137, PD1 or the IL2R.
Proteosome inhibitors appear to promote apoptotic death in the tumor targets and may limit
elaboration of immunosuppressive factors. Making the adoptive transfer of T cells bullet-
proof by making them TGB-b insensitive, as described, would represent one of the versions
of enhancing effector pathways as a third emergent pathway in cancer gene therapy.
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