Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Fusion of the HSV-1 tegument protein vp22 to cytosine deaminase confers enhanced bystander effect and increased therapeutic benefit

Abstract

A major limitation in cancer gene therapy, specifically gene-dependent enzyme prodrug therapy (GDEPT), is inefficient gene delivery and expression. The suicide gene cytosine deaminase (CD) and its substrate, 5-fluorocytosine (5-FC), have been extensively explored due to the inherent ‘bystander’ effect achieved through diffusion of the toxic metabolite 5-fluorouracil (5-FU). In this study, we aimed to enhance this ‘bystander’ effect by fusing the Saccharomyces cerevisiae CD to the HSV-1 tegument protein vp22, a novel translocating protein. Two constructs were created: one with vp22 fused to CD (vp22CD) and a second wherein a truncated vp22, lacking the necessary residues for trafficking, fused to CD (delvp22CD). The generated 9L stable lines exhibited similar growth rates, enzyme expression, CD activity, and sensitivity to 5-FC and 5-FU. However, mixed population colony formation assays demonstrated greater bystander effect with the vp22CD fusion as compared to delvp22CD. This enhancement was maintained in vivo where 9L tumors expressing 20 or 50% vp22CD exhibited increased growth delay compared to the respective delvp22CD tumors. Moreover, adenoviral transduction of established wild-type 9L tumors showed increased growth delay with vp22CD (Ad-EF_vp22CD) as compared to equivalent CD (Ad-EF_CD) transduced tumors. Finally, confirming the increased efficacy, 19F magnetic resonance spectroscopy (MRS) of vp22CD-expressing tumors demonstrated increased 5-FU levels as compared to tumors expressing the nontranslocating CD. These results together demonstrated that fusion of vp22 to CD resulted in CD translocation, which in turn amplified conversion of 5-FC to 5-FU in vivo and enhanced the therapeutic benefit of this GDEPT strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Kerr DJ, Young LS, Searle PF, McNeish IA . Gene directed enzyme prodrug therapy for cancer. Adv Drug Deliv Rev 1997; 26: 173–184.

    Article  CAS  Google Scholar 

  2. Lawrence TS, Rehemtulla A, Ng EY, Wilson M, Trosko JE, Stetson PL . Preferential cytotoxicity of cells transduced with cytosine deaminase compared to bystander cells after treatment with 5-flucytosine. Cancer Res 1998; 58: 2588–2593.

    CAS  PubMed  Google Scholar 

  3. Trinh QT, Austin EA, Murray DM, Knick VC, Huber BE . Enzyme/prodrug gene therapy: comparison of cytosine deaminase/5-fluorocytosine versus thymidine kinase/ganciclovir enzyme/prodrug systems in a human colorectal carcinoma cell line. Cancer Res 1995; 55: 4808–4812.

    CAS  PubMed  Google Scholar 

  4. Mesnil M, Piccoli C, Tiraby G, Willecke K, Yamasaki H . Bystander killing of cancer cells by herpes simplex virus thymidine kinase gene is mediated by connexins. Proc Natl Acad Sci USA 1996; 93: 1831–1835.

    Article  CAS  Google Scholar 

  5. Kievit E, Bershad E, Ng E, Sethna P, Dev I, Lawrence TS et al. Superiority of yeast over bacterial cytosine deaminase for enzyme/prodrug gene therapy in colon cancer xenografts. Cancer Res 1999; 59: 1417–1421.

    CAS  PubMed  Google Scholar 

  6. Hamstra DA, Rice DJ, Fahmy S, Ross BD, Rehemtulla A . Enzyme/prodrug therapy for head and neck cancer using a catalytically superior cytosine deaminase. Hum Gene Ther 1999; 10: 1993–2003.

    Article  CAS  Google Scholar 

  7. Erbs P, Regulier E, Kintz J, Leroy P, Poitevin Y, Exinger F et al. In vivo cancer gene therapy by adenovirus-mediated transfer of a bifunctional yeast cytosine deaminase/uracil phosphoribosyltransferase fusion gene. Cancer Res 2000; 60: 3813–3822.

    CAS  PubMed  Google Scholar 

  8. Hamstra DA, Lee KC, Tychewicz JM, Schepkin VD, Moffat BA, Chen M et al. The use of (19)F spectroscopy and diffusion-weighted MRI to evaluate differences in gene-dependent enzyme prodrug therapies. Mol Ther 2004; 10: 916–928.

    Article  CAS  Google Scholar 

  9. Kambara H, Tamiya T, Ono Y, Ohtsuka S, Terada K, Adachi Y et al. Combined radiation and gene therapy for brain tumors with adenovirus-mediated transfer of cytosine deaminase and uracil phosphoribosyltransferase genes. Cancer Gene Ther 2002; 9: 840–845.

    Article  CAS  Google Scholar 

  10. Miyagi T, Koshida K, Hori O, Konaka H, Katoh H, Kitagawa Y et al. Gene therapy for prostate cancer using the cytosine deaminase/uracil phosphoribosyltransferase suicide system. J Gene Med 2003; 5: 30–37.

    Article  CAS  Google Scholar 

  11. Tiraby M, Cazaux C, Baron M, Drocourt D, Reynes JP, Tiraby G . Concomitant expression of E. coli cytosine deaminase and uracil phosphoribosyltransferase improves the cytotoxicity of 5-fluorocytosine. FEMS Microbiol Lett 1998; 167: 41–49.

    Article  CAS  Google Scholar 

  12. Verma IM, Somia N . Gene therapy – promises, problems and prospects. Nature 1997; 389: 239–242.

    Article  CAS  Google Scholar 

  13. Somia N, Verma IM . Gene therapy: trials and tribulations. Nat Rev Genet 2000; 1: 91–99.

    Article  CAS  Google Scholar 

  14. McCormick F . Cancer gene therapy: fringe or cutting edge? Nat Rev Cancer 2001; 1: 130–141.

    Article  CAS  Google Scholar 

  15. Greco O, Scott SD, Marples B, Dachs GU . Cancer gene therapy: ‘delivery, delivery, delivery’. Front Biosci 2002; 7: d1516–d1524.

    PubMed  Google Scholar 

  16. Dachs GU, Dougherty GJ, Stratford IJ, Chaplin DJ . Targeting gene therapy to cancer: a review. Oncol Res 1997; 9: 313–325.

    CAS  PubMed  Google Scholar 

  17. Huber BE, Austin EA, Richards CA, Davis ST, Good SS . Metabolism of 5-fluorocytosine to 5-fluorouracil in human colorectal tumor cells transduced with the cytosine deaminase gene: significant antitumor effects when only a small percentage of tumor cells express cytosine deaminase. Proc Natl Acad Sci USA 1994; 91: 8302–8306.

    Article  CAS  Google Scholar 

  18. Luft FC . Can VP22 resurrect gene therapy? J Mol Med 1999; 77: 575–576.

    Article  CAS  Google Scholar 

  19. Lundberg P, Langel U . A brief introduction to cell-penetrating peptides. J Mol Recognit 2003; 16: 227–233.

    Article  CAS  Google Scholar 

  20. Snyder EL, Dowdy SF . Cell penetrating peptides in drug delivery. Pharm Res 2004; 21: 389–393.

    Article  CAS  Google Scholar 

  21. Trehin R, Merkle HP . Chances and pitfalls of cell penetrating peptides for cellular drug delivery. Eur J Pharm Biopharm 2004; 58: 209–223.

    Article  CAS  Google Scholar 

  22. Elliott G, O'Hare P . Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 1997; 88: 223–233.

    Article  CAS  Google Scholar 

  23. Martin A, O'Hare P, McLauchlan J, Elliott G . Herpes simplex virus tegument protein VP22 contains overlapping domains for cytoplasmic localization, microtubule interaction, and chromatin binding. J Virol 2002; 76: 4961–4970.

    Article  CAS  Google Scholar 

  24. Aints A, Dilber MS, Smith CI . Intercellular spread of GFP-VP22. J Gene Med 1999; 1: 275–279.

    Article  CAS  Google Scholar 

  25. Cashman SM, Sadowski SL, Morris DJ, Frederick J, Kumar-Singh R . Intercellular trafficking of adenovirus-delivered HSV VP22 from the retinal pigment epithelium to the photoreceptors – implications for gene therapy. Mol Ther 2002; 6: 813–823.

    Article  CAS  Google Scholar 

  26. Elliott G, O'Hare P . Intercellular trafficking of VP22–GFP fusion proteins. Gene Therapy 1999; 6: 149–151.

    Article  CAS  Google Scholar 

  27. Elliott G, O'Hare P . Live-cell analysis of a green fluorescent protein-tagged herpes simplex virus infection. J Virol 1999; 73: 4110–4119.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wybranietz WA, Prinz F, Spiegel M, Schenk A, Bitzer M, Gregor M et al. Quantification of VP22–GFP spread by direct fluorescence in 15 commonly used cell lines. J Gene Med 1999; 1: 265–274.

    Article  CAS  Google Scholar 

  29. Phelan A, Elliott G, O'Hare P . Intercellular delivery of functional p53 by the herpesvirus protein VP22. Nat Biotechnol 1998; 16: 440–443.

    Article  CAS  Google Scholar 

  30. Dilber MS, Phelan A, Aints A, Mohamed AJ, Elliott G, Smith CI et al. Intercellular delivery of thymidine kinase prodrug activating enzyme by the herpes simplex virus protein, VP22. Gene Therapy 1999; 6: 12–21.

    Article  CAS  Google Scholar 

  31. Liu CS, Kong B, Xia HH, Ellem KA, Wei MQ . VP22 enhanced intercellular trafficking of HSV thymidine kinase reduced the level of ganciclovir needed to cause suicide cell death. J Gene Med 2001; 3: 145–152.

    Article  CAS  Google Scholar 

  32. Wybranietz WA, Gross CD, Phelan A, O'Hare P, Spiegel M, Graepler F et al. Enhanced suicide gene effect by adenoviral transduction of a VP22-cytosine deaminase (CD) fusion gene. Gene Therapy 2001; 8: 1654–1664.

    Article  CAS  Google Scholar 

  33. Kong BH, Wang WX, Liu CS, Ma DX, Qu X . Tegument viral protein 22 enhanced cell-killing effect of the herpes simplex virus thymidine kinase/ganciclovir system on ovarian cancer in vivo. Zhonghua Fu Chan Ke Za Zhi 2003; 38: 195–198.

    PubMed  Google Scholar 

  34. Qiu Z, Harms JS, Zhu J, Splitter GA . Bovine herpesvirus tegument protein VP22 enhances thymidine kinase/ganciclovir suicide gene therapy for neuroblastomas compared to herpes simplex virus VP22. J Virol 2004; 78: 4224–4233.

    Article  CAS  Google Scholar 

  35. Stegman LD, Rehemtulla A, Beattie B, Kievit E, Lawrence TS, Blasberg RG et al. Noninvasive quantitation of cytosine deaminase transgene expression in human tumor xenografts with in vivo magnetic resonance spectroscopy. Proc Natl Acad Sci USA 1999; 96: 9821–9826.

    Article  CAS  Google Scholar 

  36. Stevens AN, Morris PG, Iles RA, Sheldon PW, Griffiths JR . 5-fluorouracil metabolism monitored in vivo by 19F NMR. Br J Cancer 1984; 50: 113–117.

    Article  CAS  Google Scholar 

  37. Stegman LD, Rehemtulla A, Hamstra DA, Rice DJ, Jonas SJ, Stout KL et al. Diffusion MRI detects early events in the response of a glioma model to the yeast cytosine deaminase gene therapy strategy. Gene Therapy 2000; 7: 1005–1010.

    Article  CAS  Google Scholar 

  38. Kievit E, Nyati MK, Ng E, Stegman LD, Parsels J, Ross BD et al. Yeast cytosine deaminase improves radiosensitization and bystander effect by 5-fluorocytosine of human colorectal cancer xenografts. Cancer Res 2000; 60: 6649–6655.

    CAS  PubMed  Google Scholar 

  39. Segota E, Bukowski RM . The promise of targeted therapy: cancer drugs become more specific. Cleve Clin J Med 2004; 71: 551–560.

    Article  Google Scholar 

  40. Aghi M, Hochberg F, Breakefield XO . Prodrug activation enzymes in cancer gene therapy. J Gene Med 2000; 2: 148–164.

    Article  CAS  Google Scholar 

  41. Greco O, Dachs GU . Gene directed enzyme/prodrug therapy of cancer: historical appraisal and future prospectives. J Cell Physiol 2001; 187: 22–36.

    Article  CAS  Google Scholar 

  42. Freeman SM, Abboud CN, Whartenby KA, Packman CH, Koeplin DS, Moolten FL et al. The ‘bystander effect’: tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res 1993; 53: 5274–5283.

    CAS  PubMed  Google Scholar 

  43. Rehemtulla A, Hamstra DA, Kievit E, Davis MA, Ng EY, Dornfeld K et al. Extracellular expression of cytosine deaminase results in increased 5-FU production for enhanced enzyme/prodrug therapy. Anticancer Res 2004; 24: 1393–1399.

    CAS  PubMed  Google Scholar 

  44. Mullen CA, Kilstrup M, Blaese RM . Transfer of the bacterial gene for cytosine deaminase to mammalian cells confers lethal sensitivity to 5-fluorocytosine: a negative selection system. Proc Natl Acad Sci USA 1992; 89: 33–37.

    Article  CAS  Google Scholar 

  45. Wygoda MR, Wilson MR, Davis MA, Trosko JE, Rehemtulla A, Lawrence TS . Protection of herpes simplex virus thymidine kinase-transduced cells from ganciclovir-mediated cytotoxicity by bystander cells: the Good Samaritan effect. Cancer Res 1997; 57: 1699–1703.

    CAS  PubMed  Google Scholar 

  46. Rehemtulla A, Hall DE, Stegman LD, Prasad U, Chen G, Bhojani MS et al. Molecular imaging of gene expression and efficacy following adenoviral-mediated brain tumor gene therapy. Mol Imaging 2002; 1: 43–55.

    Article  CAS  Google Scholar 

  47. Lawrence TS . Reduction of doxorubicin cytotoxicity by ouabain: correlation with topoisomerase-induced DNA strand breakage in human and hamster cells. Cancer Res 1988; 48: 725–730.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support for this work was provided by NIH Grants P01CA85878, P50CA01014, and R24CA83099, The University of Michigan SPORE in Head and Neck Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Rehemtulla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, K., Hamstra, D., Bullarayasamudram, S. et al. Fusion of the HSV-1 tegument protein vp22 to cytosine deaminase confers enhanced bystander effect and increased therapeutic benefit. Gene Ther 13, 127–137 (2006). https://doi.org/10.1038/sj.gt.3302631

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302631

Keywords

This article is cited by

Search

Quick links