Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Conference Paper
  • Published:

Current issues in adeno-associated viral vector production

Abstract

Adeno-associated virus (AAV) is currently one of the most promising systems for human gene therapy. Numerous preclinical studies have documented the excellent safety profile of these vectors along with their impressive performances in their favored target, consisting of highly differentiated postmitotic tissues such as muscle, central nervous system and liver. Clinical trials have been conducted confirming these data, but also emphasizing the requirement of further high-tech developments of the production and purification procedures that would allow both scaling-up and improvement of vector batch quality, necessary to human application. The scope of this review will be the state of the art in the various production methods of recombinant AAV (rAAV), delimiting their respective perimeter of application and also their main advantages and drawbacks, and thereby shedding light on the main challenges to take in the near future to bring AAV vectors more widely into the clinics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Snyder RO . Adeno-associated virus-mediated gene delivery. J Gene Med 1999; 1: 166–175.

    Article  CAS  PubMed  Google Scholar 

  2. Berns KI . Parvoviridae: the virus and their replication. In: Fields BN, Knipe DM, Howley PM (eds) Fields in Virology. Lippincott, Raven: Philadelphia, 1996, pp 2173–2197.

    Google Scholar 

  3. Rutledge EA, Halbert CL, Russell DW . Infectious clones and vectors derived from adeno-associated virus (AAV) serotypes other than AAV type 2. J Virol 1998; 72: 309–319.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Gao GP et al. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci USA 2002; 99: 11854–11859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gao G et al. Clades of Adeno-associated viruses are widely disseminated in human tissues. J Virol 2004; 78: 6381–6388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mori S, Wang L, Takeuchi T, Kanda T . Two novel adeno-associated viruses from cynomolgus monkey: pseudotyping characterization of capsid protein. Virology 2004; 330: 375–383.

    Article  CAS  PubMed  Google Scholar 

  7. Qiu J, Pintel DJ . Alternative polyadenylation of adeno-associated virus type 5 RNA within an internal intron is governed by the distance between the promoter and the intron and is inhibited by U1 small nuclear RNP binding to the intervening donor. J Biol Chem 2004; 279: 14889–14898.

    Article  CAS  PubMed  Google Scholar 

  8. Erles K, Sebokova P, Schlehofer JR . Update on the prevalence of serum antibodies (IgG and IgM) to adeno-associated virus (AAV). J Med Virol 1999; 59: 406–411.

    Article  CAS  PubMed  Google Scholar 

  9. Tobiasch E et al. Discrimination between different types of human adeno-associated viruses in clinical samples by PCR. J Virol Methods 1998; 71: 17–25.

    Article  CAS  PubMed  Google Scholar 

  10. Kotin RM et al. Site-specific integration by adeno-associated virus. Proc Natl Acad Sci USA 1990; 87: 2211–2215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Samulski RJ et al. Targeted integration of adeno-associated virus (AAV) into human chromosome 19. EMBO J 1991; 10: 3941–3950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Samulski RJ, Berns KI, Tan M, Muzyczka N . Cloning of adeno-associated virus into pBR322: rescue of intact virus from the recombinant plasmid in human cells. Proc Natl Acad Sci USA 1982; 79: 2077–2081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Samulski RJ, Chang LS, Shenk T . A recombinant plasmid from which an infectious adeno-associated virus genome can be excised in vitro and its use to study viral replication. J Virol 1987; 61: 3096–3101.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Tratschin JD, Miller IL, Smith MG, Carter BJ . Adeno-associated virus vector for high-frequency integration, expression, and rescue of genes in mammalian cells. Mol Cell Biol 1985; 5: 3251–3260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Grimm D, Kay MA . From virus evolution to vector revolution: use of naturally occurring serotypes of adeno-associated virus (AAV) as novel vectors for human gene therapy. Curr Gene Ther 2003; 3: 281–304.

    Article  CAS  PubMed  Google Scholar 

  16. Tratschin JD, Miller IL, Carter BJ . Genetic analysis of adeno-associated virus: properties of deletion mutants constructed in vitro and evidence for an adeno-associated virus replication function. J Virol 1984; 51: 611–619.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Srivastava A, Lusby EW, Berns KI . Nucleotide sequence and organization of the adeno-associated virus 2 genome. J Virol 1983; 45: 555–564.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Weitzman MD, Kyostio SR, Kotin RM, Owens RA . Adeno-associated virus (AAV) Rep proteins mediate complex formation between AAV DNA and its integration site in human DNA. Proc Natl Acad Sci USA 1994; 91: 5808–5812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Horer M et al. Mutational analysis of adeno-associated virus Rep protein-mediated inhibition of heterologous and homologous promoters. J Virol 1995; 69: 5485–5496.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Pereira DJ, McCarty DM, Muzyczka N . The adeno-associated virus (AAV) Rep protein acts as both a repressor and an activator to regulate AAV transcription during a productive infection. J Virol 1997; 71: 1079–1088.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. King JA, Dubielzig R, Grimm D, Kleinschmidt JA . DNA helicase-mediated packaging of adeno-associated virus type 2 genomes into preformed capsids. EMBO J 2001; 20: 3282–3291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schlehofer JR, Ehrbar M, zur Hausen H . Vaccinia virus, herpes simplex virus, and carcinogens induce DNA amplification in a human cell line and support replication of a helpervirus dependent parvovirus. Virology 1986; 152: 110–117.

    Article  CAS  PubMed  Google Scholar 

  23. Weindler FW, Heilbronn R . A subset of herpes simplex virus replication genes provides helper functions for productive adeno-associated virus replication. J Virol 1991; 65: 2476–2483.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. McPherson RA, Rosenthal LJ, Rose JA . Human cytomegalovirus completely helps adeno-associated virus replication. Virology 1985; 147: 217–222.

    Article  CAS  PubMed  Google Scholar 

  25. Wistuba A et al. Subcellular compartmentalization of adeno-associated virus type 2 assembly. J Virol 1997; 71: 1341–1352.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Chiorini JA et al. Cloning of adeno-associated virus type 4 (AAV4) and generation of recombinant AAV4 particles. J Virol 1997; 71: 6823–6833.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Chiorini JA, Kim F, Yang L, Kotin RM . Cloning and characterization of adeno-associated virus type 5. J Virol 1999; 73: 1309–1319.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Xiao W et al. Gene therapy vectors based on adeno-associated virus type 1. J Virol 1999; 73: 3994–4003.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Snyder RO, Xiao X, Samulski RJ . Production of recombinant adeno-associated viral vectors. In: Dracopoli N, Haines J, Krof B, Moir D, Morton C, Seidman C, Seidman J, Smith D (eds). Current Protocols in Human Genetics. John Wiley and Sons Publisher: New York, 1996, pp 11–24.

    Google Scholar 

  30. Zolotukhin S et al. Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene Therapy 1999; 6: 973–985.

    Article  CAS  PubMed  Google Scholar 

  31. Zolotukhin S et al. Production and purification of serotype 1, 2, and 5 recombinant adeno-associated viral vectors. Methods 2002; 28: 158–167.

    Article  CAS  PubMed  Google Scholar 

  32. Brument N et al. A versatile and scalable two-step ion-exchange chromatography process for the purification of recombinant adeno-associated virus serotypes-2 and -5. Mol Ther 2002; 6: 678–686.

    Article  CAS  PubMed  Google Scholar 

  33. Kaludov N, Handelman B, Chiorini JA . Scalable purification of adeno-associated virus type 2, 4, or 5 using ion-exchange chromatography. Hum Gene Ther 2002; 13: 1235–1243.

    Article  CAS  PubMed  Google Scholar 

  34. Samulski RJ, Chang LS, Shenk T . Helper-free stocks of recombinant adeno-associated viruses: normal integration does not require viral gene expression. J Virol 1989; 63: 3822–3828.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Monahan PE et al. Direct intramuscular injection with recombinant AAV vectors results in sustained expression in a dog model of hemophilia. Gene Therapy 1998; 5: 40–49.

    Article  CAS  PubMed  Google Scholar 

  36. Snyder RO et al. Persistent and therapeutic concentrations of human factor IX in mice after hepatic gene transfer of recombinant AAV vectors. Nat Genet 1997; 16: 270–276.

    Article  CAS  PubMed  Google Scholar 

  37. Salvetti A et al. Factors influencing recombinant adeno-associated virus production. Hum Gene Ther 1998; 9: 695–706.

    Article  CAS  PubMed  Google Scholar 

  38. Xiao X, Li J, Samulski RJ . Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 1998; 72: 2224–2232.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Matsushita T et al. Adeno-associated virus vectors can be efficiently produced without helper virus. Gene Therapy 1998; 5: 938–945.

    Article  CAS  PubMed  Google Scholar 

  40. Grimm D et al. Titration of AAV-2 particles via a novel capsid ELISA: packaging of genomes can limit production of recombinant AAV-2. Gene Therapy 1999; 6: 1322–1330.

    Article  CAS  PubMed  Google Scholar 

  41. Collaco RF, Cao X, Trempe JP . A helper virus-free packaging system for recombinant adeno-associated virus vectors. Gene 1999; 238: 397–405.

    Article  CAS  PubMed  Google Scholar 

  42. Li J, Samulski RJ, Xiao X . Role for highly regulated rep gene expression in adeno-associated virus vector production. J Virol 1997; 71: 5236–5243.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Vincent KA, Piraino ST, Wadsworth SC . Analysis of recombinant adeno-associated virus packaging and requirements for rep and cap gene products. J Virol 1997; 71: 1897–1905.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Grimm D, Kern A, Rittner K, Kleinschmidt JA . Novel tools for production and purification of recombinant adenoassociated virus vectors. Hum Gene Ther 1998; 9: 2745–2760.

    Article  CAS  PubMed  Google Scholar 

  45. Allen JM, Debelak DJ, Reynolds TC, Miller AD . Identification and elimination of replication-competent adeno-associated virus (AAV) that can arise by nonhomologous recombination during AAV vector production. J Virol 1997; 71: 6816–6822.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Schlaeger EJ et al. Transient transfection in mammalian cells. A basic study for an efficient and cost-effective scale up process. In: Merten OW, Perrin P, Griffiths B (eds). New Developments and New Applications in Animal Cell Technology. Kluwer Academic Publishers: Dordrecht, 1998, pp 105–112.

    Google Scholar 

  47. Girard P et al. 100-liter transient transfection. Cytotechnology 2002; 38: 15–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Clark KR, Voulgaropoulou F, Fraley DM, Johnson PR . Cell lines for the production of recombinant adeno-associated virus. Hum Gene Ther 1995; 6: 1329–1341.

    Article  CAS  PubMed  Google Scholar 

  49. Blouin V et al. Improving rAAV production and purification: towards the definition of a scaleable process. J Gene Med 2004; 6 (Suppl 1): S223–S228.

    Article  CAS  PubMed  Google Scholar 

  50. Gao GP et al. Rep/Cap gene amplification and high-yield production of AAV in an A549 cell line expressing Rep/Cap. Mol Ther 2002; 5: 644–649.

    Article  CAS  PubMed  Google Scholar 

  51. Tessier J et al. Characterization of adenovirus-induced inverted terminal repeat-independent amplification of integrated adeno-associated virus rep–cap sequences. J Virol 2001; 75: 375–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Clark KR, Voulgaropoulou F, Johnson PR . A stable cell line carrying adenovirus-inducible rep and cap genes allows for infectivity titration of adeno-associated virus vectors. Gene Therapy 1996; 3: 1124–1132.

    CAS  PubMed  Google Scholar 

  53. Inoue N, Russell DW . Packaging cells based on inducible gene amplification for the production of adeno-associated virus vectors. J Virol 1998; 72: 7024–7031.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Fan PD, Dong JY . Replication of rep–cap genes is essential for the high-efficiency production of recombinant AAV. Hum Gene Ther 1997; 8: 87–98.

    Article  CAS  PubMed  Google Scholar 

  55. Gao GP et al. High-titer adeno-associated viral vectors from a Rep/Cap cell line and hybrid shuttle virus. Hum Gene Ther 1998; 9: 2353–2362.

    Article  CAS  PubMed  Google Scholar 

  56. Clark KR, Liu X, McGrath JP, Johnson PR . Highly purified recombinant adeno-associated virus vectors are biologically active and free of detectable helper and wild-type viruses. Hum Gene Ther 1999; 10: 1031–1039.

    Article  CAS  PubMed  Google Scholar 

  57. Liu XL, Clark KR, Johnson PR . Production of recombinant adeno-associated virus vectors using a packaging cell line and a hybrid recombinant adenovirus. Gene Therapy 1999; 6: 293–299.

    Article  CAS  PubMed  Google Scholar 

  58. Chadeuf G et al. Efficient recombinant adeno-associated virus production by a stable rep–cap HeLa cell line correlates with adenovirus-induced amplification of the integrated rep–cap genome. J Gene Med 2000; 2: 260–268.

    Article  CAS  PubMed  Google Scholar 

  59. Liu X et al. Selective rep–Cap gene amplification as a mechanism for high-titer recombinant AAV production from stable cell lines. Mol Ther 2000; 2: 394–403.

    Article  CAS  PubMed  Google Scholar 

  60. Myers MW, Laughlin CA, Jay FT, Carter BJ . Adenovirus helper function for growth of adeno-associated virus: effect of temperature-sensitive mutations in adenovirus early gene region 2. J Virol 1980; 35: 65–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Schwarz E et al. Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature 1985; 314: 111–114.

    Article  CAS  PubMed  Google Scholar 

  62. Mathews LC, Gray JT, Gallagher MR, Snyder RO . Recombinant adeno-associated viral vector production using stable packaging and producer cell lines. Methods Enzymol 2002; 346: 393–413.

    Article  CAS  PubMed  Google Scholar 

  63. Farson D et al. Development and characterization of a cell line for large-scale, serum-free production of recombinant adeno-associated viral vectors. J Gene Med 2004; 6: 1369–1381.

    Article  CAS  PubMed  Google Scholar 

  64. Toublanc E et al. Identification of a replication-defective herpes simplex virus for recombinant adeno-associated virus type 2 (rAAV2) particle assembly using stable producer cell lines. J Gene Med 2004; 6: 555–564.

    Article  CAS  PubMed  Google Scholar 

  65. Oualikene W, Lamoureux L, Weber JM, Massie B . Protease-deleted adenovirus vectors and complementing cell lines: potential applications of single-round replication mutants for vaccination and gene therapy. Hum Gene Ther 2000; 11: 1341–1353.

    Article  CAS  PubMed  Google Scholar 

  66. Thorne B . Scaleable processes for rAAV manufacturing. WilBio Meeting on Viral Vectors & Vaccines – Process Development and Production Issues, Las Vegas, NE 2003.

  67. Qiao C et al. Feasibility of generating adeno-associated virus packaging cell lines containing inducible adenovirus helper genes. J Virol 2002; 76: 1904–1913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Qiao C et al. A novel gene expression control system and its use in stable, high-titer 293 cell-based adeno-associated virus packaging cell lines. J Virol 2002; 76: 13015–13027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Conway J et al. High-titer recombinant adeno-associated virus production utilizing a recombinant herpes simplex virus type I vector expressing AAV-2 Rep and Cap. Gene Therapy 1999; 6: 986–993.

    Article  CAS  PubMed  Google Scholar 

  70. Wustner JT et al. Production of recombinant adeno-associated type 5 (rAAV5) vectors using recombinant herpes simplex viruses containing rep and cap. Mol Ther 2002; 6: 510–518.

    Article  CAS  PubMed  Google Scholar 

  71. Booth MJ et al. Transfection-free and scalable recombinant AAV vector production using HSV/AAV hybrids. Gene Therapy 2004; 11: 829–837.

    Article  CAS  PubMed  Google Scholar 

  72. Blissard GW . Baculovirus–insect cell interactions. Cytotechnology 1996; 20: 73–93.

    Article  CAS  PubMed  Google Scholar 

  73. Schmid G . Insect cell cultivation: growth and kinetics. Cytechnology 1996; 20: 43–55.

    Article  CAS  Google Scholar 

  74. Kitts PA . Construction of baculovirus recombinants. Cytechnology 1996; 20: 111–123.

    Article  CAS  Google Scholar 

  75. Ikonomou L, Schneider Y-J, Agathos SN . Insect cell culture for industrial production of recombinant proteins. Appl Microbiol Biotechnol 2003; 62: 1–20.

    Article  CAS  PubMed  Google Scholar 

  76. Maranga L, Cruz PE, Aunins JG, Carrondo MJ . Production of core and virus-like particles with baculovirus infected insect cells. Adv Biochem Eng Biotechnol 2002; 74: 183–206.

    CAS  PubMed  Google Scholar 

  77. Casal JI . Parvovirus diagnostics and vaccine production in insect cells. Cytotechnology 1996; 20: 261–270.

    Article  CAS  PubMed  Google Scholar 

  78. Ruffing M, Zentgraf H, Kleinschmidt JA . Assembly of viruslike particles by recombinant structural proteins of adeno-associated virus type 2 in insect cells. J Virol 1992; 66: 6922–6930.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Sollerbrant K et al. A novel method using baculovirus-mediated gene transfer for production of recombinant adeno-associated virus vectors. J Gen Virol 2001; 82: 2051–2060.

    Article  CAS  PubMed  Google Scholar 

  80. Urabe M, Ding C, Kotin RM . Insect cells as a factory to produce adeno-associated virus type 2 vectors. Hum Gene Ther 2002; 13: 1935–1943.

    Article  CAS  PubMed  Google Scholar 

  81. Meghrous J et al. Production of recombinant adeno-associated viral vectors using a baculovirus/insect cell suspension culture system: from shake flasks to a 20-L bioreactor. Biotechnol Prog 2005; 21: 154–160.

    Article  CAS  PubMed  Google Scholar 

  82. Rabinowitz JE et al. Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J Virol 2002; 76: 791–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merten, OW., Gény-Fiamma, C. & Douar, A. Current issues in adeno-associated viral vector production. Gene Ther 12 (Suppl 1), S51–S61 (2005). https://doi.org/10.1038/sj.gt.3302615

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302615

This article is cited by

Search

Quick links