Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Epstein–Barr virus vector-mediated gene transfer into human B cells: potential for antitumor vaccination

Abstract

The efficient gene transfer of immunostimulatory cytokines into autologous tumor cells or the transfer of tumor-associated antigens into professional antigen-presenting cells is a prerequisite for many immunotherapeutic approaches. In particular with B cells, the efficiency of gene uptake is one of the limiting factors in cell-based vaccine strategies, since normal and malignant human B cells are commonly refractory to transducing gene vectors. Due to its natural tropism for human B cells, Epstein–Barr virus (EBV), a human herpes virus, might be an option, which we wanted to explore. EBV efficiently infects human B cells and establishes a latent infection, while the viral genome is maintained extrachromosomally. Although these characteristics are attractive, EBV is an oncogenic virus. Here, we present a novel EBV-derived vector, which lacks three EBV genes including two viral oncogenes and an essential lytic gene, and encodes granulocyte-macrophage colony-stimulating factor (GM-CSF) as a cytokine of therapeutic interest. We could show that EBV vectors efficiently transduce different B-cell lines, primary resting B cells, and tumor cells of B-cell lineage. Vector-derived GM-CSF was expressed in sufficient amounts to support the maturation of dendritic cells and their presentation of model antigens to cognate T-cell clones in autologous settings and an allogeneic, HLA-matched assay. We conclude that the EBV vector system might offer an option for ex vivo manipulation of B cells and gene therapy of B-cell lymphomas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Pardoll DM . Spinning molecular immunology into successful immunotherapy. Nat Rev Immunol 2002; 2: 227–238.

    Article  CAS  Google Scholar 

  2. Kay MA, Glorioso JC, Naldini L . Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med 2001; 7: 33–40.

    Article  CAS  Google Scholar 

  3. Rieger R, Kipps TJ . CpG oligodeoxynucleotides enhance the capacity of adenovirus-mediated CD154 gene transfer to generate effective B-cell lymphoma vaccines. Cancer Res 2003; 63: 4128–4135.

    CAS  PubMed  Google Scholar 

  4. Kofler DM, Buning H, Mayr C, Bund D, Baumert J, Hallek M et al. Engagement of the B-cell antigen receptor (BCR) allows efficient transduction of ZAP-70-positive primary B-CLL cells by recombinant adeno-associated virus (rAAV) vectors. Gene Therapy 2004; 11: 1416–1424.

    Article  CAS  Google Scholar 

  5. Anonymous. Epstein–Barr Virus and Kaposi's Sarcoma Herpesvirus/Human Herpesvirus 8. Lyon: International Agency for Research on Cancer (IARC), 1997.

  6. Hammerschmidt W, Sugden B . Genetic analysis of immortalizing functions of Epstein–Barr virus in human B lymphocytes. Nature 1989; 340: 393–397.

    Article  CAS  Google Scholar 

  7. Dirmeier U, Neuhierl B, Kilger E, Reisbach G, Sandberg ML, Hammerschmidt W . Latent membrane protein 1 is critical for efficient growth transformation of human B cells by Epstein–Barr virus. Cancer Res 2003; 63: 2982–2989.

    CAS  PubMed  Google Scholar 

  8. Feederle R, Kost M, Baumann M, Janz A, Drouet E, Hammerschmidt W et al. The Epstein–Barr virus lytic program is controlled by the co-operative functions of two transactivators. EMBO J 2000; 19: 3080–3089.

    Article  CAS  Google Scholar 

  9. Schepers A, Pich D, Hammerschmidt W . A transcription factor with homology to the AP-1 family links RNA transcription and DNA replication in the lytic cycle of Epstein–Barr virus. Eur Mol Biol Org J 1993; 12: 3921–3929.

    Article  CAS  Google Scholar 

  10. Delecluse HJ, Hilsendegen T, Pich D, Zeidler R, Hammerschmidt W . Propagation and recovery of intact, infectious Epstein–Barr virus from prokaryotic to human cells. Proc Natl Acad Sci USA 1998; 95: 8245–8250.

    Article  CAS  Google Scholar 

  11. Metcalf D, Burgess AW, Johnson GR, Nicola NA, Nice EC, DeLamarter J et al. In vitro actions on hemopoietic cells of recombinant murine GM-CSF purified after production in Escherichia coli: comparison with purified native GM-CSF. J Cell Physiol 1986; 128: 421–431.

    Article  CAS  Google Scholar 

  12. Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA 1993; 90: 3539–3543.

    Article  CAS  Google Scholar 

  13. Banchereau J, Steinman RM . Dendritic cells and the control of immunity. Nature 1998; 392: 245–252.

    Article  CAS  Google Scholar 

  14. Dranoff G . GM-CSF-secreting melanoma vaccines. Oncogene 2003; 22: 3188–3192.

    Article  CAS  Google Scholar 

  15. Simons JW . Bioactivity of human GM-CSF gene therapy in metastatic renal cell carcinoma and prostate cancer. Hinyokika Kiyo 1997; 43: 821–822.

    CAS  PubMed  Google Scholar 

  16. Dranoff G, Soiffer R, Lynch T, Mihm M, Jung K, Kolesar K et al. A phase I study of vaccination with autologous, irradiated melanoma cells engineered to secrete human granulocyte-macrophage colony stimulating factor. Hum Gene Ther 1997; 8: 111–123.

    Article  CAS  Google Scholar 

  17. Soiffer R, Hodi FS, Haluska F, Jung K, Gillessen S, Singer S et al. Vaccination with irradiated, autologous melanoma cells engineered to secrete granulocyte-macrophage colony-stimulating factor by adenoviral-mediated gene transfer augments antitumor immunity in patients with metastatic melanoma. J Clin Oncol 2003; 21: 3343–3350.

    Article  CAS  Google Scholar 

  18. Mahvi DM, Sondel PM, Yang NS, Albertini MR, Schiller JH, Hank J et al. Phase I/IB study of immunization with autologous tumor cells transfected with the GM-CSF gene by particle-mediated transfer in patients with melanoma or sarcoma. Hum Gene Ther 1997; 8: 875–891.

    Article  CAS  Google Scholar 

  19. Nemunaitis J, Sterman D, Jablons D, Smith II JW, Fox B, Maples P et al. Granulocyte-macrophage colony-stimulating factor gene-modified autologous tumor vaccines in non-small-cell lung cancer. J Nat Cancer Inst 2004; 96: 326–331.

    Article  CAS  Google Scholar 

  20. Delecluse HJ, Pich D, Hilsendegen T, Baum C, Hammerschmidt W . A first-generation packaging cell line for Epstein–Barr virus-derived vectors. Proc Natl Acad Sci USA 1999; 96: 5188–5193.

    Article  CAS  Google Scholar 

  21. Delecluse HJ, Hammerschmidt W . The genetic approach to the Epstein–Barr virus: from basic virology to gene therapy. Mol Pathol 2000; 53: 270–279.

    Article  CAS  Google Scholar 

  22. Kieff E, Rickinson AB . Epstein–Barr virus and its replication. In: Knipe DM et al. (eds.), Field's Virology. Philadelphia: Lippincott-Williams & Wilkins, 2001, pp. 2511–2573.

    Google Scholar 

  23. Kilger E, Kieser A, Baumann M, Hammerschmidt W . Epstein–Barr virus-mediated B-cell proliferation is dependent upon latent membrane protein 1, which simulates an activated CD40 receptor. EMBO J 1998; 17: 1700–1709.

    Article  CAS  Google Scholar 

  24. Dirmeier U, Hoffmann R, Kilger E, Schultheiss U, Briseño C, Gires O et al. Latent membrane protein 1 of Epstein–Barr virus coordinately regulates proliferation with control of apoptosis. Oncogene 2005; 24: 1711–1717.

    Article  CAS  Google Scholar 

  25. Kulwichit W, Edwards RH, Davenport EM, Baskar JF, Godfrey V, Raab-Traub N . Expression of the Epstein–Barr virus latent membrane protein 1 induces B cell lymphoma in transgenic mice. Proc Natl Acad Sci USA 1998; 95: 11963–11968.

    Article  CAS  Google Scholar 

  26. Wilson JB, Weinberg W, Johnson R, Yuspa S, Levine AJ . Expression of the BNLF-1 oncogene of Epstein–Barr virus in the skin of transgenic mice induces hyperplasia and aberrant expression of keratin 6. Cell 1990; 61: 1315–1327.

    Article  CAS  Google Scholar 

  27. Wang D, Liebowitz D, Kieff E . An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell 1985; 43: 831–840.

    Article  CAS  Google Scholar 

  28. Cohen JI, Wang F, Mannick J, Kieff E . Epstein–Barr virus nuclear protein 2 is a key determinant of lymphocyte transformation. Proc Natl Acad Sci USA 1989; 86: 9558–9562.

    Article  CAS  Google Scholar 

  29. Karasuyama H, Kudo A, Melchers F . The proteins encoded by the VpreB and lambda 5 pre-B cell-specific genes can associate with each other and with mu heavy chain. J Exp Med 1990; 172: 969–972.

    Article  CAS  Google Scholar 

  30. Neuhierl B, Feederle R, Delecluse HJ . Glycoprotein gp110 of Epstein–Barr virus determines viral tropism and efficiency of infection. Proc Natl Acad Sci USA 2002; 99: 15036–15041.

    Article  CAS  Google Scholar 

  31. Sugden B, Mark W . Clonal transformation of adult human leukocytes by Epstein–Barr virus. J Virol 1977; 23: 503–508.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Klausner RD, Donaldson JG, Lippincott-Schwartz J . Brefeldin A: insights into the control of membrane traffic and organelle structure. J Cell Biol 1992; 116: 1071–1080.

    Article  CAS  Google Scholar 

  33. Takada K, Horinouchi K, Ono Y, Aya T, Osato T, Takahashi M et al. An Epstein–Barr virus-producer line Akata: establishment of the cell line and analysis of viral DNA. Virus Genes 1991; 5: 147–156.

    Article  CAS  Google Scholar 

  34. Goldblum N, Daefler S, Llana T, Ablashi D, Josephs S, Salahuddin Z . Susceptibility to HIV-1 infection of a human B-lymphoblastoid cell line, DG75, transfected with subgenomic DNA fragments of Epstein–Barr virus. Dev Biol Stand 1990; 72: 309–313.

    CAS  PubMed  Google Scholar 

  35. Kitamura T, Tange T, Terasawa T, Chiba S, Kuwaki T, Miyagawa K et al. Establishment and characterization of a unique human cell line that proliferates dependently on GM-CSF, IL-3, or erythropoietin. J Cell Physiol 1989; 140: 323–334.

    Article  CAS  Google Scholar 

  36. Nimmerjahn F, Kobelt D, Steinkasserer A, Menke A, Hobom G, Behrends U et al. Efficient generation and expansion of antigen-specific CD4+ T cells by recombinant influenza viruses. Eur J Immunol 2003; 33: 3331–3341.

    Article  CAS  Google Scholar 

  37. Sallusto F, Cella M, Danieli C, Lanzavecchia A . Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J Exp Med 1995; 182: 389–400.

    Article  CAS  Google Scholar 

  38. Li Z, Dullmann J, Schiedlmeier B, Schmidt M, von Kalle C, Meyer J et al. Murine leukemia induced by retroviral gene marking. Science 2002; 296: 497.

    Article  CAS  Google Scholar 

  39. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302: 415–419.

    Article  CAS  Google Scholar 

  40. Raper SE, Chirmule N, Lee FS, Wivel NA, Bagg A, Gao GP et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 2003; 80: 148–158.

    Article  CAS  Google Scholar 

  41. Kreppel F, Kochanek S . Long-term transgene expression in proliferating cells mediated by episomally maintained high-capacity adenovirus vectors. J Virol 2004; 78: 9–22.

    Article  CAS  Google Scholar 

  42. Wendtner CM, Kofler DM, Mayr C, Bund D, Hallek M . The potential of gene transfer into primary B-CLL cells using recombinant virus vectors. Leuk Lymphoma 2004; 45: 897–904.

    Article  CAS  Google Scholar 

  43. Wierda WG, Cantwell MJ, Woods SJ, Rassenti LZ, Prussak CE, Kipps TJ . CD40-ligand (CD154) gene therapy for chronic lymphocytic leukemia. Blood 2000; 96: 2917–2924.

    CAS  PubMed  Google Scholar 

  44. Janssens W, Chuah MK, Naldini L, Follenzi A, Collen D, Saint-Remy JM et al. Efficiency of onco-retroviral and lentiviral gene transfer into primary mouse and human B-lymphocytes is pseudotype dependent. Hum Gene Therapy 2003; 14: 263–276.

    Article  CAS  Google Scholar 

  45. Bonamino M, Serafini M, D'Amico G, Gaipa G, Todisco E, Bernasconi S et al. Functional transfer of CD40L gene in human B-cell precursor ALL blasts by second-generation SIN lentivectors. Gene Therapy 2004; 11: 85–93.

    Article  CAS  Google Scholar 

  46. Lizee G, Gonzales MI, Topalian SL . Lentivirus vector-mediated expression of tumor-associated epitopes by human antigen presenting cells. Hum Gene Therapy 2004; 15: 393–404.

    Article  CAS  Google Scholar 

  47. Spender LC, Cannell EJ, Hollyoake M, Wensing B, Gawn JM, Brimmell M et al. Control of cell cycle entry and apoptosis in B lymphocytes infected by Epstein–Barr virus. J Virol 1999; 73: 4678–4688.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Conese M, Auriche C, Ascenzioni F . Gene therapy progress and prospects: episomally maintained self-replicating systems. Gene Therapy 2004; 11: 1735–1741.

    Article  CAS  Google Scholar 

  49. Soiffer R, Lynch T, Mihm M, Jung K, Rhuda C, Schmollinger JC et al. Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte-macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma. Proc Natl Acad Sci USA 1998; 95: 13141–13146.

    Article  CAS  Google Scholar 

  50. Strehl J, Selmayr M, Kremer JP, Hultner L, Lindhofer H, Mocikat R . Gene therapy of B-cell lymphoma with cytokine gene-modified trioma cells. Int J Cancer 1999; 83: 113–120.

    Article  CAS  Google Scholar 

  51. Selmayr M et al. Induction of tumor immunity by autologous B lymphoma cells expressing a genetically engineered idiotype. Gene Therapy 1999; 6: 778–784.

    Article  CAS  Google Scholar 

  52. Mach N, Dranoff G . Cytokine-secreting tumor cell vaccines. Curr Opin Immunol 2000; 12: 571–575.

    Article  CAS  Google Scholar 

  53. Levitsky HI et al. Immunization with granulocyte-macrophage colony-stimulating factor-transduced, but not B7-1-transduced, lymphoma cells primes idiotype-specific T cells and generates potent systemic antitumor immunity. J Immunol 1996; 156: 3858–3865.

    CAS  PubMed  Google Scholar 

  54. Maeda A et al. Epstein–Barr virus can infect B-chronic lymphocytic leukemia cells but it does not orchestrate the cell cycle regulatory proteins. J Hum Virol 2001; 4: 227–237.

    CAS  PubMed  Google Scholar 

  55. Teramoto N et al. Epstein–Barr virus-infected B-chronic lymphocyte leukemia cells express the virally encoded nuclear proteins but they do not enter the cell cycle. J Hum Virol 2000; 3: 125–136.

    CAS  PubMed  Google Scholar 

  56. Wahl U et al. Vaccination against B-cell chronic lymphocytic leukemia with trioma cells: preclinical evaluation. Clin Cancer Res 2003; 9: 4240–4246.

    CAS  PubMed  Google Scholar 

  57. Posfai G, Koob MD, Kirkpatrick HA, Blattner FR . Versatile insertion plasmids for targeted genome manipulations in bacteria: isolation, deletion, and rescue of the pathogenicity island LEE of the Escherichia coli O157:H7 genome. J Bacteriol 1997; 179: 4426–4428.

    Article  CAS  Google Scholar 

  58. O'Connor M, Peifer M, Bender W . Construction of large DNA segments in Escherichia coli. Science 1989; 244: 1307–1312.

    Article  CAS  Google Scholar 

  59. Cherepanov PP, Wackernagel W . Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 1995; 158: 9–14.

    Article  CAS  Google Scholar 

  60. Hammerschmidt W, Sugden B . Identification and characterization of oriLyt, a lytic origin of DNA replication of Epstein–Barr virus. Cell 1988; 55: 427–433.

    Article  CAS  Google Scholar 

  61. Schultheiss U et al. TRAF6 is a critical mediator of signal transduction by the viral oncogene latent membrane protein 1. EMBO J 2001; 20: 5678–5691.

    Article  CAS  Google Scholar 

  62. Nimmerjahn F et al. Major histocompatibility complex class II-restricted presentation of a cytosolic antigen by autophagy. Eur J Immunol 2003; 33: 1250–1259.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Sanderstiftung to RM and WH, by Grants Ha1354/3 and SFB455 of the Deutsche Forschungsgemeinschaft, and by Public Health Service Grant CA70723 to WH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W Hammerschmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hellebrand, E., Mautner, J., Reisbach, G. et al. Epstein–Barr virus vector-mediated gene transfer into human B cells: potential for antitumor vaccination. Gene Ther 13, 150–162 (2006). https://doi.org/10.1038/sj.gt.3302602

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302602

Keywords

This article is cited by

Search

Quick links