Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Sodium iodide symporter-mediated radioiodide imaging and therapy of ovarian tumor xenografts in mice

Abstract

Ovarian cancer represents the fifth leading cause of cancer death among women in the United States, with >16 000 deaths expected this year. This study was carried out to investigate the potential of sodium iodide symporter (NIS)-mediated radioiodide therapy as a novel approach for ovarian cancer treatment. Radioiodide is routinely and effectively used for the treatment of benign and malignant thyroid disease as a result of native thyroidal expression of NIS, which mediates iodide uptake. In vitro gene transfer studies in ovarian cancer cells revealed a 12- and five-fold increase in iodide uptake when transduced with Ad/CMV/NIS or Ad/MUC1/NIS, respectively. Western blot/immunohistochemistry confirmed NIS protein expression. In vivo ovarian tumor xenografts were infected with the adenoviral constructs. 123I imaging revealed a clear image of the CMV/NIS-transduced tumor, with a less intense image apparent following infection with MUC1/NIS. Therapeutic doses of 131I following CMV/NIS infection caused a mean 53% reduction in tumor volume (P<0.0001). MUC1/NIS-transduced tumors did not regress, although at 8 weeks following therapy, tumor volume was significantly less that of control animals (166 versus 332%, respectively, P<0.05). This study represents a promising first step investigating the potential for NIS-mediated radioiodide imaging and therapy of ovarian tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

NIS:

sodium iodide symporter

CMV:

cytomegalovirus

MOI:

multiplicity of infection.

References

  1. Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A et al. Cancer Statistics, 2005. CA Cancer J Clin 2005; 55: 10–30.

    Article  PubMed  Google Scholar 

  2. Ozols RF, Bookman MA, Connolly DC, Daly MB, Goldwin AK, Schilder RJ et al. Focus on epithelial ovarian cancer. Cancer Cell 2004; 5: 19–24.

    Article  CAS  PubMed  Google Scholar 

  3. NIH Consensus Conference. Ovarian cancer. Screening, treatment, and follow-up. NIH Consensus Development Panel on Ovarian Cancer. JAMA 1995; 273: 491–497.

  4. Ozols RF . Management of advanced ovarian cancer consensus summary. Advanced Ovarian Cancer Consensus Faculty. Semin Oncol 2000; 27: 47–49.

    CAS  PubMed  Google Scholar 

  5. Kigawa J, Sato S, Shimada M, Takahashi M, Itamochi H, Kanamori Y et al. p53 gene status and chemosensitivity in ovarian cancer. Hum Cell 2001; 14: 165–171.

    CAS  PubMed  Google Scholar 

  6. Gaducci A, Cosio S, Muraca S, Genazzani A . Molecular mechanisms of apoptosis and chemosensitivity to platinum and paclitaxel in ovarian cancer: biological data and clinical implications. Eur J Gynaecol Oncol 2002; 23: 390–396.

    Google Scholar 

  7. Coukos G, Rubin SC . Chemotherapy resistance in ovarian cancer: new molecular perspectives. Obstet Gynecol 1998; 91: 783–792.

    CAS  PubMed  Google Scholar 

  8. Dohan O, Carrasco N . Advances in Na+/I− symporter (NIS) research in the thyroid and beyond. Mol Cell Endocrinol 2003; 213: 59–70.

    Article  CAS  PubMed  Google Scholar 

  9. Spitzweg C, Dietz AB, O'Connor MK, Bergert ER, Tindall DJ, Young CYF et al. In vivo sodium iodide symporter gene therapy of prostate cancer. Gene Therapy 2001; 8: 1524–1531.

    Article  CAS  PubMed  Google Scholar 

  10. Nakamoto Y, Saga T, Misaki T, Kobayashi H, Sato N, Ishimori T et al. Establishment and characterization of a breast cancer cell line expressing Na+/I symporters for radioiodide concentrator gene therapy. J Nucl Med 2000; 41: 1898–1904.

    CAS  PubMed  Google Scholar 

  11. Boland A, Marcel R, Opolon P, Bidart J-M, Yeh P, Filetti S et al. Adenovirus-mediated transfer of the thyroid sodium-iodide symporter gene into tumors for a targeted radiotherapy. Cancer Res 2000; 60: 3484–3492.

    CAS  PubMed  Google Scholar 

  12. Dingli D, Diaz RM, Bergert ER, O'Connor MK, Morris JC, Russell SJ . Genetically targeted radiotherapy for multiple myeloma. Gene Therapy 2003; 102: 489–496.

    CAS  Google Scholar 

  13. Cho J-Y, Shen DHY, Yang W, Williams B, Buckwalter TLF, LaPerle KMD et al. In vivo imaging and radioiodine therapy following sodium iodide symporter gene transfer in animal model of intracerebral gliomas. Gene Therapy 2002; 9: 1139–1145.

    Article  CAS  PubMed  Google Scholar 

  14. Groot-Wassink T, Aboagye EO, Glaser M, Lemoine NR, Vassaux G . Adenovirus biodistribution and noninvasive imaging of gene expression in vivo by positron emission tomography using human sodium/iodide symporter as reporter gene. Hum Gene Ther 2002; 13: 1723–1735.

    Article  CAS  PubMed  Google Scholar 

  15. Carlin S, Cunningham SH, Boyd M, McCluskey AG, Mairs RG . Experimental targeted radioiodide therapy following transfection of the sodium iodide symporter gene: effect on clonogenicity in both two- and three-dimensional models. Cancer Gene Ther 2000; 7: 1–8.

    Article  Google Scholar 

  16. Kakinuma H, Bergert ER, Spitzweg C, Cheville JC, Lieber MM, Morris JC . Probasin promoter (ARR2PB)-driven, prostate-specific expression of the human sodium iodide symporter (h-NIS) for targeted radioiodine therapy of prostate cancer. Cancer Res 2003; 15: 7840–7844.

    Google Scholar 

  17. Dwyer RM, Bergert ER, O'Connor MK, Gendler SJ, Morris JC . In vivo radioiodide imaging and treatment of breast cancer xenografts following MUC1-driven expression of the sodium iodide symporter (NIS). Clin Cancer Res 2005; 11: 1483–1489.

    Article  CAS  PubMed  Google Scholar 

  18. Ichige K, Perry L, Vogel CA, Buchegger F, Kufe D . Expression of the DF3-P epitope in human ovarian carcinomas. Clin Cancer Res 1995; 1: 565–571.

    CAS  PubMed  Google Scholar 

  19. Dong Y, Walsh MD, Cummings MC, Wright RG, Khoo SK, Parsons PG et al. Expression of MUC1 and MUC2 mucins in epithelial ovarian tumors. J Pathol 1997; 183: 311–317.

    Article  CAS  PubMed  Google Scholar 

  20. Stimpfl M, Schmid BC, Schiebel I, Tong D, Leodolter S, Obermair A et al. Expression of mucins and cytokeratins in ovarian cancer cell lines. Cancer Lett 1999; 145: 133–141.

    Article  CAS  PubMed  Google Scholar 

  21. Feng H, Ghazizadeh M, Konishi H, Araki T . Expression of MUC1 and MUC2 gene products in human ovarian carcinomas. Jpn J Clin Oncol 2002; 32: 525–529.

    Article  PubMed  Google Scholar 

  22. Zeimet AG, Muller-Holzner E, Schuler A, Hartung G, Berger JT, Hermann M et al. Determination of molecules regulating gene delivery using adenoviral vectors in ovarian carcinomas. Gene Therapy 2002; 9: 1093–1100.

    Article  CAS  PubMed  Google Scholar 

  23. You Z, Fischer DC, Tong X, Hasenberg A, Aguilar-Cordova E, Kieback DG . Coxsackievirus–adenovirus receptor expression in ovarian cancer cell lines is associated with increased adenovirus transduction efficiency and transgene expression. Cancer Gene Ther 2001; 8: 168–175.

    Article  CAS  PubMed  Google Scholar 

  24. Hart IR . Tissue specific promoters in targeting systemically delivered gene therapy. Semin Oncol 1996; 23: 154–158.

    CAS  PubMed  Google Scholar 

  25. MIRD dose estimate report No. 5: summary of current radiation dose estimates to humans from 123I, 124I, 126I, 130I, 131I and 132I as sodium iodide. J Nucl Med 1975; 16: 857–860.

  26. Mazzaferri E, Kloos R . Current approaches to primary therapy for papillary and follicular thyroid cancer. J Clin Endocrinol Metab 2001; 86: 1447–1463.

    Article  CAS  PubMed  Google Scholar 

  27. Wapnir IL, Van DeRijn M, Nowels K, Amenta PS, Walton K, Montgomery K et al. Immunohistochemical profile of the human sodium/iodide symporter in thyroid, breast, and other carcinomas using high density tissue microarrays and conventional sections. J Clin Endocrinol Metab 2003; 88: 1880–1888.

    Article  CAS  PubMed  Google Scholar 

  28. Mandell RB, Mandell LZ, Link CJ . Radioisotope concentrator gene therapy using the sodium/iodide symporter gene. Cancer Res 1999; 59: 661–668.

    CAS  PubMed  Google Scholar 

  29. Tai Y-T, Strobel T, Kufe D, Cannistra SA . In vivo cytotoxicity of ovarian cancer cells through tumor-selective expression of the BAX gene. Cancer Res 1999; 59: 2121–2126.

    CAS  PubMed  Google Scholar 

  30. Casado E, Gomez-Navarro J, Yamamoto M, Adachi Y, Coolidge CJ, Arafat WO et al. Strategies to accomplish targeted expression of transgenes in ovarian cancer for molecular therapeutic applications. Clin Cancer Res 2001; 7: 2496–2504.

    CAS  PubMed  Google Scholar 

  31. Ring C, Blouin P, Martin L-A, Hurst HC, Lemoine NR . Use of transcriptional regulatory elements of the MUC1 and ERBB2 genes to drive tumor-selective expression of a prodrug activating enzyme. Gene Therapy 1997; 4: 1045–1052.

    Article  CAS  PubMed  Google Scholar 

  32. Dmitriev I, Krasnykh V, Miller CR, Wang M, Kashentseva E, Mikheeva G et al. An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor-independent cell entry mechanism. J Virol 1998; 72: 9706–9713.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kanerva A, Bauerschmitz GJ, Yamamoto T, Lam JT, Alvarez RD, Siegal GP et al. A cyclooxygenase-2 promoter-based conditionally replicating adenovirus with enhanced infectivity for treatment of ovarian adenocarcinoma. Gene Therapy 2004; 11: 552–559.

    Article  CAS  PubMed  Google Scholar 

  34. Breidenbach M, Rein DT, Wang M, Nettelback DM, Hemminki A, Ulasov I et al. Genetic replacement of the adenovirus shaft fiber reduces liver tropism in ovarian cancer gene therapy. Hum Gene Therapy 2004; 15: 509–518.

    Article  CAS  Google Scholar 

  35. Wu H, Han T, Lam JT, Leath CA, Dmitrev I, Kashentseva E et al. Preclinical evaluation of a class of infectivity-enhanced adenoviral vectors in ovarian cancer gene therapy. Gene Therapy 2004; 11: 874–878.

    Article  PubMed  Google Scholar 

  36. Weiss S, Philip N, Grollman E . Iodine transport in a continuous line of cultured cells from rat thyroid. Endocrinology 1984; 114: 1090–1098.

    Article  CAS  PubMed  Google Scholar 

  37. Spitzweg C, Zhang Z, Bergert ER, Castro MR, McIver B, Heufelder AE et al. Prostate-specific antigen promoter-driven androgen-inducible expression of sodium iodide symporter in prostate cancer cell lines. Cancer Res 1999; 59: 2136–2141.

    CAS  PubMed  Google Scholar 

  38. Castro RM, Bergert ER, Beito TG, McIver B, Goellner JR, Morris JC . Development of monoclonal antibodies against the human sodium iodide symporter: immunohistochemical characterization of this protein in thyroid cells. J Clin Endocrinol Metab 1999; 84: 2957–2962.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Prospect Creek Foundation provided the main source of funding for this work. Support was also received from the Mayo Foundation Breast Cancer grant, Prostate Cancer SPORE grant (CA91956) and the Mayo Breast Cancer Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J C Morris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dwyer, R., Bergert, E., O'Connor, M. et al. Sodium iodide symporter-mediated radioiodide imaging and therapy of ovarian tumor xenografts in mice. Gene Ther 13, 60–66 (2006). https://doi.org/10.1038/sj.gt.3302599

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302599

Keywords

This article is cited by

Search

Quick links