Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Intracellular trafficking of retroviral vectors: obstacles and advances

Abstract

Retroviruses are efficient vehicles for delivering transgenes in vivo. Their ability to integrate into the host genome, providing a permanent imprint of their genes in the host, is a key asset for gene therapy. Furthermore, the lentivirus subset of retroviruses can infect nondividing as well as dividing cells. This expands the cell types capable of gene therapy, driving the development of lentiviral vectors. However, the precise mechanisms used by different retroviruses to efficiently deliver their genes into cell nuclei remains largely unclear. Understanding these molecular mechanisms may reveal features to improve the efficacy of current retroviral vectors. Moreover, this knowledge may expose elements pliable to other gene therapy vehicles to improve their in vivo performance and circumvent the biosafety concerns of using retroviral vectors. Therefore, the mechanisms underlying the early trafficking of retroviral vectors in host cells are reviewed here, as understood from studying the native retroviruses. Events after virus entry up to nuclear delivery of the viral cDNA are discussed. Cellular obstacles faced by these retroviral vectors and how they advance beyond these barriers is emphasized.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Roe T, Reynolds TC, Yu G, Brown PO . Integration of murine leukemia virus DNA depends on mitosis. EMBO J 1993; 12: 2099–2108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lewis PF, Emerman M . Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J Virol 1994; 68: 510–516.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Weinberg JB, Matthews TJ, Cullen BR, Malim MH . Productive human immunodeficiency virus type 1 (HIV-1) infection of nonproliferating human monocytes. J Exp Med 1991; 174: 1477–1482.

    CAS  PubMed  Google Scholar 

  4. Bukrinsky MI et al. Active nuclear import of human immunodeficiency virus type 1 preintegration complexes. Proc Natl Acad Sci USA 1992; 89: 6580–6584.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Lewis P, Hensel M, Emerman M . Human immunodeficiency virus infection of cells arrested in the cell cycle. EMBO J 1992; 11: 3053–3058.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Cockrell AS, Kafri T . HIV-1 vectors: fulfillment of expectations, further advancements, and still a way to go. Curr HIV Res 2003; 1: 419–439.

    CAS  PubMed  Google Scholar 

  7. Pages JC, Bru T . Toolbox for retrovectorologists. J Gene Med 2004; 6 (Suppl 1): S67–S82.

    CAS  PubMed  Google Scholar 

  8. Anson DS . The use of retroviral vectors for gene therapy – what are the risks. A review of retroviral pathogenesis and its relevance to retroviral vector-mediated gene delivery. Genet Vaccines Ther 2004; 2: 9.

    PubMed  PubMed Central  Google Scholar 

  9. Yi Y, Hahm SH, Lee KH . Retroviral gene therapy: safety issues and possible solutions. Curr Gene Ther 2005; 5: 25–35.

    CAS  PubMed  Google Scholar 

  10. Hacein-Bey-Abina S et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302: 415–419.

    Article  CAS  PubMed  Google Scholar 

  11. Check E . Gene therapy put on hold as third child develops cancer. Nature 2005; 433: 561.

    PubMed  Google Scholar 

  12. Freed EO . HIV-1 and the host cell: an intimate association. Trends Microbiol 2004; 12: 170–177.

    CAS  PubMed  Google Scholar 

  13. Delenda C . Lentiviral vectors: optimization of packaging, transduction and gene expression. J Gene Med 2004; 6 (Suppl 1): S125–S138.

    CAS  PubMed  Google Scholar 

  14. Chang L, Goldman RD . Intermediate filaments mediate cytoskeletal crosstalk. Nat Rev Mol Cell Biol 2004; 5: 601–613.

    CAS  PubMed  Google Scholar 

  15. Coulombe PA, Wong P . Cytoplasmic intermediate filaments revealed as dynamic and multipurpose scaffolds. Nat Cell Biol 2004; 6: 699–706.

    CAS  PubMed  Google Scholar 

  16. Revenu C, Athman R, Robine S, Louvard D . The co-workers of actin filaments: from cell structures to signals. Nat Rev Mol Cell Biol 2004; 5: 635–646.

    CAS  PubMed  Google Scholar 

  17. Alberts B et al. Chapter 16: The Cytoskeleton. In: Gibbs S (ed). Molecular Biology of the Cell, 4th edn. Garland Science: New York, 2002, pp 907–982.

    Google Scholar 

  18. Marsh M, Bron R . SFV infection in CHO cells: cell-type specific restrictions to productive virus entry at the cell surface. J Cell Sci 1997; 110 (Part 1): 95–103.

    CAS  PubMed  Google Scholar 

  19. Gruenheid S, Finlay BB . Microbial pathogenesis and cytoskeletal function. Nature 2003; 422: 775–781.

    CAS  PubMed  Google Scholar 

  20. DePina AS, Langford GM . Vesicle transport: the role of actin filaments and myosin motors. Microsc Res Tech 1999; 47: 93–106.

    CAS  PubMed  Google Scholar 

  21. Varmark H . Functional role of centrosomes in spindle assembly and organization. J Cell Biochem 2004; 91: 904–914.

    CAS  PubMed  Google Scholar 

  22. Mallik R, Gross SP . Molecular motors: strategies to get along. Curr Biol 2004; 14: R971–R982.

    CAS  PubMed  Google Scholar 

  23. Sodeik B, Ebersold MW, Helenius A . Microtubule-mediated transport of incoming herpes simplex virus 1 capsids to the nucleus. J Cell Biol 1997; 136: 1007–1021.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kelkar SA, Pfister KK, Crystal RG, Leopold PL . Cytoplasmic dynein mediates adenovirus binding to microtubules. J Virol 2004; 78: 10122–10132.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Suomalainen M et al. Microtubule-dependent plus- and minus end-directed motilities are competing processes for nuclear targeting of adenovirus. J Cell Biol 1999; 144: 657–672.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. McDonald D et al. Visualization of the intracellular behavior of HIV in living cells. J Cell Biol 2002; 159: 441–452.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Burns JC et al. Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci USA 1993; 90: 8033–8037.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Campbell EM, Nunez R, Hope TJ . Disruption of the actin cytoskeleton can complement the ability of Nef to enhance human immunodeficiency virus type 1 infectivity. J Virol 2004; 78: 5745–5755.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Nisole S, Saib A . Early steps of retrovirus replicative cycle. Retrovirology 2004; 1: 9.

    PubMed  PubMed Central  Google Scholar 

  30. Anderson JL, Hope TJ . HIV accessory proteins and surviving the host cell. Curr HIV/AIDS Rep 2004; 1: 47–53.

    PubMed  Google Scholar 

  31. Chazal N et al. Human immunodeficiency virus type 1 particles pseudotyped with envelope proteins that fuse at low pH no longer require Nef for optimal infectivity. J Virol 2001; 75: 4014–4018.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Tobiume M et al. Nef does not affect the efficiency of human immunodeficiency virus type 1 fusion with target cells. J Virol 2003; 77: 10645–10650.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Bukrinskaya A, Brichacek B, Mann A, Stevenson M . Establishment of a functional human immunodeficiency virus type 1 (HIV-1) reverse transcription complex involves the cytoskeleton. J Exp Med 1998; 188: 2113–2125.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Komano J, Miyauchi K, Matsuda Z, Yamamoto N . Inhibiting the Arp2/3 complex limits infection of both intracellular mature vaccinia virus and primate lentiviruses. Mol Biol Cell 2004; 15: 5197–5207.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Iyengar S, Hildreth JE, Schwartz DH . Actin-dependent receptor colocalization required for human immunodeficiency virus entry into host cells. J Virol 1998; 72: 5251–5255.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kizhatil K, Albritton LM . Requirements for different components of the host cell cytoskeleton distinguish ecotropic murine leukemia virus entry via endocytosis from entry via surface fusion. J Virol 1997; 71: 7145–7156.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Freed EO . HIV-1 replication. Somat Cell Mol Genet 2001; 26: 13–33.

    CAS  PubMed  Google Scholar 

  38. Risco C et al. Intracellular transport of the murine leukemia virus during acute infection of NIH 3T3 cells: nuclear import of nucleocapsid protein and integrase. J Cell Sci 1995; 108 (Part 9): 3039–3050.

    CAS  PubMed  Google Scholar 

  39. Fassati A, Goff SP . Characterization of intracellular reverse transcription complexes of Moloney murine leukemia virus. J Virol 1999; 73: 8919–8925.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Petit C et al. Targeting of incoming retroviral Gag to the centrosome involves a direct interaction with the dynein light chain 8. J Cell Sci 2003; 116: 3433–3442.

    CAS  PubMed  Google Scholar 

  41. Miller MD, Farnet CM, Bushman FD . Human immunodeficiency virus type 1 preintegration complexes: studies of organization and composition. J Virol 1997; 71: 5382–5390.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Fassati A, Goff SP . Characterization of intracellular reverse transcription complexes of human immunodeficiency virus type 1. J Virol 2001; 75: 3626–3635.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Bukrinsky MI et al. Association of integrase, matrix, and reverse transcriptase antigens of human immunodeficiency virus type 1 with viral nucleic acids following acute infection. Proc Natl Acad Sci USA 1993; 90: 6125–6129.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Forshey BM, Shi J, Aiken C . Structural requirements for recognition of the human immunodeficiency virus type 1 core during host restriction in owl monkey cells. J Virol 2005; 79: 869–875.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang H, Dornadula G, Orenstein J, Pomerantz RJ . Morphologic changes in human immunodeficiency virus type 1 virions secondary to intravirion reverse transcription: evidence indicating that reverse transcription may not take place within the intact viral core. J Hum Virol 2000; 3: 165–172.

    CAS  PubMed  Google Scholar 

  46. Forshey BM, von Schwedler U, Sundquist WI, Aiken C . Formation of a human immunodeficiency virus type 1 core of optimal stability is crucial for viral replication. J Virol 2002; 76: 5667–5677.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Nermut MV, Fassati A . Structural analyses of purified human immunodeficiency virus type 1 intracellular reverse transcription complexes. J Virol 2003; 77: 8196–8206.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kaushik R, Ratner L . Role of human immunodeficiency virus type 1 matrix phosphorylation in an early postentry step of virus replication. J Virol 2004; 78: 2319–2326.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kiernan RE, Ono A, Englund G, Freed EO . Role of matrix in an early postentry step in the human immunodeficiency virus type 1 life cycle. J Virol 1998; 72: 4116–4126.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Bampi C et al. The chaperoning and assistance roles of the HIV-1 nucleocapsid protein in proviral DNA synthesis and maintenance. Curr HIV Res 2004; 2: 79–92.

    CAS  PubMed  Google Scholar 

  51. Forshey BM, Aiken C . Disassembly of human immunodeficiency virus type 1 cores in vitro reveals association of nef with the subviral ribonucleoprotein complex. J Virol 2003; 77: 4409–4414.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Dvorin JD, Malim MH . Intracellular trafficking of HIV-1 cores: journey to the center of the cell. Curr Top Microbiol Immunol 2003; 281: 179–208.

    CAS  PubMed  Google Scholar 

  53. Llano M et al. LEDGF/p75 determines cellular trafficking of diverse lentiviral but not murine oncoretroviral integrase proteins and is a component of functional lentiviral preintegration complexes. J Virol 2004; 78: 9524–9537.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Lin CW, Engelman A . The barrier-to-autointegration factor is a component of functional human immunodeficiency virus type 1 preintegration complexes. J Virol 2003; 77: 5030–5036.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Andreadis S et al. Toward a more accurate quantitation of the activity of recombinant retroviruses: alternatives to titer and multiplicity of infection. J Virol 2000; 74: 3431–3439.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Luby-Phelps K . Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int Rev Cytol 2000; 192: 189–221.

    CAS  PubMed  Google Scholar 

  57. de Soultrait VR et al. HIV-1 integrase interacts with yeast microtubule-associated proteins. Biochim Biophys Acta 2002; 1575: 40–48.

    CAS  PubMed  Google Scholar 

  58. Saib A et al. Nuclear targeting of incoming human foamy virus Gag proteins involves a centriolar step. J Virol 1997; 71: 1155–1161.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Bailey CJ, Crystal RG, Leopold PL . Association of adenovirus with the microtubule organizing center. J Virol 2003; 77: 13275–13287.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Weis K . Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle. Cell 2003; 112: 441–451.

    CAS  PubMed  Google Scholar 

  61. Fahrenkrog B, Aebi U . The nuclear pore complex: nucleocytoplasmic transport and beyond. Nat Rev Mol Cell Biol 2003; 4: 757–766.

    CAS  PubMed  Google Scholar 

  62. Yamashita M, Emerman M . Capsid is a dominant determinant of retrovirus infectivity in nondividing cells. J Virol 2004; 78: 5670–5678.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Katz RA, Greger JG, Boimel P, Skalka AM . Human immunodeficiency virus type 1 DNA nuclear import and integration are mitosis independent in cycling cells. J Virol 2003; 77: 13412–13417.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ebina H et al. Role of Nup98 in nuclear entry of human immunodeficiency virus type 1 cDNA. Microbes Infect 2004; 6: 715–724.

    CAS  PubMed  Google Scholar 

  65. Zennou V et al. HIV-1 genome nuclear import is mediated by a central DNA flap. Cell 2000; 101: 173–185.

    CAS  PubMed  Google Scholar 

  66. Fassati A et al. Nuclear import of HIV-1 intracellular reverse transcription complexes is mediated by importin 7. EMBO J 2003; 22: 3675–3685.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Haffar OK et al. Two nuclear localization signals in the HIV-1 matrix protein regulate nuclear import of the HIV-1 pre-integration complex. J Mol Biol 2000; 299: 359–368.

    CAS  PubMed  Google Scholar 

  68. Bukrinsky MI et al. A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature 1993; 365: 666–669.

    CAS  PubMed  Google Scholar 

  69. Daneholt B . Assembly and transport of a premessenger RNP particle. Proc Natl Acad Sci USA 2001; 98: 7012–7017.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Greber UF, Fassati A . Nuclear import of viral DNA genomes. Traffic 2003; 4: 136–143.

    CAS  PubMed  Google Scholar 

  71. Katz RA, Greger JG, Skalka AM . Effects of cell cycle status on early events in retroviral replication. J Cell Biochem 2005; 94: 880–889.

    CAS  PubMed  Google Scholar 

  72. Kukolj G, Katz RA, Skalka AM . Characterization of the nuclear localization signal in the avian sarcoma virus integrase. Gene 1998; 223: 157–163.

    CAS  PubMed  Google Scholar 

  73. Goff SP . Retrovirus restriction factors. Mol Cell 2004; 16: 849–859.

    CAS  PubMed  Google Scholar 

  74. Bieniasz PD . Intrinsic immunity: a front-line defense against viral attack. Nat Immunol 2004; 5: 1109–1115.

    CAS  PubMed  Google Scholar 

  75. Harris RS, Liddament MT . Retroviral restriction by APOBEC proteins. Nat Rev Immunol 2004; 4: 868–877.

    CAS  PubMed  Google Scholar 

  76. Avery RJ et al. Interferon inhibits transformation by murine sarcoma viruses before integration of provirus. Nature 1980; 288: 93–95.

    CAS  PubMed  Google Scholar 

  77. Salzberg S, Shurtz R, Feder J, Aboud M . Effect of interferon on the penetration of murine leukemia virus and the binding of its genome RNA to polyribosomes at the early stage of infection. Arch Virol 1983; 78: 267–278.

    CAS  PubMed  Google Scholar 

  78. Cremer I, Vieillard V, De Maeyer E . Retrovirally mediated IFN-beta transduction of macrophages induces resistance to HIV, correlated with up-regulation of RANTES production and down-regulation of C-C chemokine receptor-5 expression. J Immunol 2000; 164: 1582–1587.

    CAS  PubMed  Google Scholar 

  79. Vieillard V, Lauret E, Rousseau V, De Maeyer E . Blocking of retroviral infection at a step prior to reverse transcription in cells transformed to constitutively express interferon beta. Proc Natl Acad Sci USA 1994; 91: 2689–2693.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Sheehy AM, Gaddis NC, Choi JD, Malim MH . Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 2002; 418: 646–650.

    CAS  PubMed  Google Scholar 

  81. Jarmuz A et al. An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. Genomics 2002; 79: 285–296.

    CAS  PubMed  Google Scholar 

  82. Harris RS, Petersen-Mahrt SK, Neuberger MS . RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Mol Cell 2002; 10: 1247–1253.

    CAS  PubMed  Google Scholar 

  83. Harris RS et al. DNA deamination mediates innate immunity to retroviral infection. Cell 2003; 113: 803–809.

    CAS  PubMed  Google Scholar 

  84. Mariani R et al. Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif. Cell 2003; 114: 21–31.

    CAS  PubMed  Google Scholar 

  85. Lilly F . Susceptibility to two strains of Friend leukemia virus in mice. Science 1967; 155: 461–462.

    CAS  PubMed  Google Scholar 

  86. Pincus T, Hartley JW, Rowe WP . A major genetic locus affecting resistance to infection with murine leukemia viruses. IV. Dose–response relationships in Fv-1-sensitive and resistant cell cultures. Virology 1975; 65: 333–342.

    CAS  PubMed  Google Scholar 

  87. Best S, Le Tissier P, Towers G, Stoye JP . Positional cloning of the mouse retrovirus restriction gene Fv1. Nature 1996; 382: 826–829.

    CAS  PubMed  Google Scholar 

  88. Benit L et al. Cloning of a new murine endogenous retrovirus, MuERV-L, with strong similarity to the human HERV-L element and with a gag coding sequence closely related to the Fv1 restriction gene. J Virol 1997; 71: 5652–5657.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. DesGroseillers L, Jolicoeur P . Physical mapping of the Fv-1 tropism host range determinant of BALB/c murine leukemia viruses. J Virol 1983; 48: 685–696.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Kozak CA, Chakraborti A . Single amino acid changes in the murine leukemia virus capsid protein gene define the target of Fv1 resistance. Virology 1996; 225: 300–305.

    CAS  PubMed  Google Scholar 

  91. Pryciak PM, Varmus HE . Fv-1 restriction and its effects on murine leukemia virus integration in vivo and in vitro. J Virol 1992; 66: 5959–5966.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Towers G et al. A conserved mechanism of retrovirus restriction in mammals. Proc Natl Acad Sci USA 2000; 97: 12295–12299.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Cowan S et al. Cellular inhibitors with Fv1-like activity restrict human and simian immunodeficiency virus tropism. Proc Natl Acad Sci USA 2002; 99: 11914–11919.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Hofmann W et al. Species-specific, postentry barriers to primate immunodeficiency virus infection. J Virol 1999; 73: 10020–10028.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Owens CM, Yang PC, Gottlinger H, Sodroski J . Human and simian immunodeficiency virus capsid proteins are major viral determinants of early, postentry replication blocks in simian cells. J Virol 2003; 77: 726–731.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Stremlau M et al. The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature 2004; 427: 848–853.

    CAS  PubMed  Google Scholar 

  97. Keckesova Z, Ylinen LM, Towers GJ . The human and African green monkey TRIM5alpha genes encode Ref1 and Lv1 retroviral restriction factor activities. Proc Natl Acad Sci USA 2004; 101: 10780–10785.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Hatziioannou T et al. Retrovirus resistance factors Ref1 and Lv1 are species-specific variants of TRIM5alpha. Proc Natl Acad Sci USA 2004; 101: 10774–10779.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Reymond A et al. The tripartite motif family identifies cell compartments. EMBO J 2001; 20: 2140–2151.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Stremlau M, Perron M, Welikala S, Sodroski J . Species-specific variation in the B30.2(SPRY) domain of TRIM5{alpha} determines the potency of human immunodeficiency virus restriction. J Virol 2005; 79: 3139–3145.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Sawyer SL, Wu LI, Emerman M, Malik HS . Positive selection of primate TRIM5{alpha} identifies a critical species-specific retroviral restriction domain. Proc Natl Acad Sci USA 2005; 102: 2832–2837.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Yap MW, Nisole S, Stoye JP . A single amino acid change in the SPRY domain of human Trim5alpha leads to HIV-1 restriction. Curr Biol 2005; 15: 73–78.

    CAS  PubMed  Google Scholar 

  103. Sayah DM, Sokolskaja E, Berthoux L, Luban J . Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1. Nature 2004; 430: 569–573.

    CAS  PubMed  Google Scholar 

  104. Nisole S, Lynch C, Stoye JP, Yap MW . A Trim5-cyclophilin A fusion protein found in owl monkey kidney cells can restrict HIV-1. Proc Natl Acad Sci USA 2004; 101: 13324–13328.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Luban J et al. Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B. Cell 1993; 73: 1067–1078.

    CAS  PubMed  Google Scholar 

  106. Waddington SN et al. Long-term transgene expression by administration of a lentivirus-based vector to the fetal circulation of immuno-competent mice. Gene Therapy 2003; 10: 1234–1240.

    CAS  PubMed  Google Scholar 

  107. Gregory LG et al. Highly efficient EIAV-mediated in utero gene transfer and expression in the major muscle groups affected by Duchenne muscular dystrophy. Gene Therapy 2004; 11: 1117–1125.

    CAS  PubMed  Google Scholar 

  108. Lu R et al. Class II integrase mutants with changes in putative nuclear localization signals are primarily blocked at a postnuclear entry step of human immunodeficiency virus type 1 replication. J Virol 2004; 78: 12735–12746.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Schroder AR et al. HIV-1 integration in the human genome favors active genes and local hotspots. Cell 2002; 110: 521–529.

    CAS  PubMed  Google Scholar 

  110. Wu X, Li Y, Crise B, Burgess SM . Transcription start regions in the human genome are favored targets for MLV integration. Science 2003; 300: 1749–1751.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported through the National Institutes of Health RO1 Grant AI47770 to TJ Hope.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, J., Hope, T. Intracellular trafficking of retroviral vectors: obstacles and advances. Gene Ther 12, 1667–1678 (2005). https://doi.org/10.1038/sj.gt.3302591

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302591

Keywords

This article is cited by

Search

Quick links