Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Retroviral transduction of IL-7Rα into IL-7Rα−/− bone marrow progenitors: correction of lymphoid deficiency and induction of neutrophilia

Abstract

Defects in the gene for the IL-7 receptor (R) α chain are one cause of severe combined immunodeficiency disease (SCID) based on a strict requirement for IL-7 in T lymphoid development and survival. We tested the feasibility and potentially undesirable consequences of IL-7Rα gene transfer as a therapy for this genetic defect. The murine IL-7Rα gene was introduced into IL-7Rα−/− bone marrow progenitors using retrovirus and transplanted into Rag−/− recipient mice. Both αβ and γδ T cells were reconstituted in thymus and spleen showing proof of principle. B-cell development was also restored in some mice, but their numbers were much lower than in the T-cell compartment. Splenomegaly was observed due to an increase in neutrophils. We showed that hematopoeitic progenitors, after transfection with IL-7Rα, could respond to IL-7 in vitro by a striking production of neutrophils and other myeloid cells. These data indicate that although IL-7 is a critical lymphopoietin, ectopic expression of its receptor on multipotential progenitors can also induce production of myeloid cells, presumably through survival and proliferation signals that are not restricted to lymphoid cells. This supports the stochastic model of progenitor differentiation, in which cytokines give permissive and not instructive signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 5
Figure 4
Figure 6

Similar content being viewed by others

References

  1. Hofmeister R et al. Interleukin-7: physiological roles and mechanisms of action. Cytokine Growth Factor Rev 1999; 10: 41–60.

    Article  CAS  PubMed  Google Scholar 

  2. Puel A, Ziegler SF, Buckley RH, Leonard WJ . Defective IL7R expression in T(−)B(+)NK(+) severe combined immunodeficiency. Nat Genet 1998; 20: 394–397.

    CAS  PubMed  Google Scholar 

  3. Roifman CM, Zhang J, Chitayat D, Sharfe N . A partial deficiency of interleukin-7R alpha is sufficient to abrogate T-cell development and cause severe combined immunodeficiency. Blood 2000; 96: 2803–2807.

    CAS  PubMed  Google Scholar 

  4. Noguchi M et al. Interleukin-2 receptor gamma chain: a functional component of the interleukin-7 receptor. Science 1993; 262: 1877–1880.

    Article  CAS  PubMed  Google Scholar 

  5. Macchi P et al. Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature 1995; 377: 65–68.

    Article  CAS  PubMed  Google Scholar 

  6. Grabstein KH et al. Inhibition of murine B and T lymphopoiesis in vivo by an anti-interleukin 7 monoclonal antibody. J Exp Med 1993; 178: 257–264.

    Article  CAS  PubMed  Google Scholar 

  7. Peschon JJ et al. Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J Exp Med 1994; 180: 1955–1960.

    Article  CAS  PubMed  Google Scholar 

  8. von-Freeden-Jeffry U et al. Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J Exp Med 1995; 181: 1519–1526.

    Article  CAS  PubMed  Google Scholar 

  9. Akashi K et al. Bcl-2 rescues T lymphopoiesis in interleukin-7 receptor-deficient mice. Cell 1997; 89: 1033–1041.

    CAS  PubMed  Google Scholar 

  10. Kim K et al. The trophic action of IL-7 on pro-T cells: inhibition of apoptosis of pro-T1, -T2, and -T3 cells correlates with Bcl-2 and Bax levels and is independent of Fas and p53 pathways. J Immunol 1998; 160: 5735–5741.

    CAS  PubMed  Google Scholar 

  11. Maraskovsky E et al. Bcl-2 can rescue T lymphocyte development in interleukin-7 receptor-deficient mice but not in mutant rag-1−/− mice. Cell 1997; 89: 1011–1019.

    Article  CAS  PubMed  Google Scholar 

  12. Khaled AR et al. Withdrawal of IL-7 induces Bax translocation from cytosol to mitochondria through a rise in intracellular pH. Proc Natl Acad Sci USA 1999; 96: 14476–14481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Khaled AR et al. Bax deficiency partially corrects interleukin-7 receptor alpha deficiency. Immunity 2002; 17: 561–573.

    Article  CAS  PubMed  Google Scholar 

  14. Durum SK et al. Interleukin 7 receptor control of T cell receptor gamma gene rearrangement: role of receptor-associated chains and locus accessibility. J Exp Med 1998; 188: 2233–2241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brugnera E et al. Coreceptor reversal in the thymus: signaled CD4+8+ thymocytes initially terminate CD8 transcription even when differentiating into CD8+ T cells. Immunity 2000; 13: 59–71.

    Article  CAS  PubMed  Google Scholar 

  16. Schluns KS, Kieper WC, Jameson SC, Lefrancois L . Interleukin-7 mediates the homeostasis of naive and memory CD8T cells in vivo. Nat Immunol 2000; 1: 426–432.

    Article  CAS  PubMed  Google Scholar 

  17. Tan JT et al. Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8(+) cells but are not required for memory phenotype CD4(+) cells. J Exp Med 2002; 195: 1523–1532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kalman L et al. Mutations in genes required for T-cell development: IL7R, CD45, IL2RG, JAK3, RAG1, RAG2, ARTEMIS, and ADA and severe combined immunodeficiency: HuGE review. Genet Med 2004; 6: 16–26.

    Article  CAS  PubMed  Google Scholar 

  19. Cavazzana-Calvo M et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000; 288: 669–672.

    Article  CAS  PubMed  Google Scholar 

  20. Hacein-Bey-Abina S et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302: 415–419.

    Article  CAS  PubMed  Google Scholar 

  21. Jiang Q et al. Distinct regions of the interleukin-7 receptor regulate different Bcl2 family members. Mol Cell Biol 2004; 24: 6501–6513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hacein-Bey H et al. Gamma-c gene transfer into SCID X1 patients’ B-cell lines restores normal high-affinity interleukin-2 receptor expression and function. Blood 1996; 87: 3108–3116.

    CAS  PubMed  Google Scholar 

  23. Kohn DB et al. Engraftment of gene-modified umbilical cord blood cells in neonates with adenosine deaminase deficiency. Nat Med 1995; 1: 1017–1023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rolink A et al. Immature surface Ig+ B cells can continue to rearrange kappa and lambda L chain gene loci. J Exp Med 1993; 178: 1263–1270.

    Article  CAS  PubMed  Google Scholar 

  25. Purohit SJ et al. Determination of lymphoid cell fate is dependent on the expression status of the IL-7 receptor. EMBO J 2003; 22: 5511–5521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kaech SM et al. Selective expression of the interleukin 7 receptor identifies effector CD8T cells that give rise to long-lived memory cells. Nat Immunol 2003; 4: 1191–1198.

    Article  CAS  PubMed  Google Scholar 

  27. Opferman JT et al. Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1. Nature 2003; 426: 671–676.

    Article  CAS  PubMed  Google Scholar 

  28. Lopez AF et al. Recombinant human granulocyte-macrophage colony-stimulating factor stimulates in vitro mature human neutrophil and eosinophil function, surface receptor expression, and survival. J Clin Invest 1986; 78: 1220–1228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Goldsmith MA et al. Absence of cytokine receptor-dependent specificity in red blood cell differentiation in vivo. Proc Natl Acad Sci USA 1998; 95: 7006–7011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dubart A et al. Murine pluripotent hematopoietic progenitors constitutively expressing a normal erythropoietin receptor proliferate in response to erythropoietin without preferential erythroid cell differentiation. Mol Cell Biol 1994; 14: 4834–4842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pharr PN, Ogawa M, Hofbauer A, Longmore GD . Expression of an activated erythropoietin or a colony-stimulating factor 1 receptor by pluripotent progenitors enhances colony formation but does not induce differentiation. Proc Natl Acad Sci USA 1994; 91: 7482–7486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nishijima I et al. A human GM-CSF receptor expressed in transgenic mice stimulates proliferation and differentiation of hemopoietic progenitors to all lineages in response to human GM-CSF. Mol Biol Cell 1995; 6: 497–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang FC et al. Human granulocyte colony-stimulating factor (G-CSF) stimulates the in vitro and in vivo development but not commitment of primitive multipotential progenitors from transgenic mice expressing the human G-CSF receptor. Blood 1998; 92: 4632–4640.

    CAS  PubMed  Google Scholar 

  34. Semerad CL, Poursine-Laurent J, Liu F, Link DC . A role for G-CSF receptor signaling in the regulation of hematopoietic cell function but not lineage commitment or differentiation. Immunity 1999; 11: 153–161.

    Article  CAS  PubMed  Google Scholar 

  35. Takagi M et al. Multi-colony stimulating activity of interleukin 5 (IL-5) on hematopoietic progenitors from transgenic mice that express IL-5 receptor alpha subunit constitutively. J Exp Med 1995; 181: 889–899.

    Article  CAS  PubMed  Google Scholar 

  36. Damia G et al. Administration of recombinant human interleukin-7 alters the frequency and number of myeloid progenitor cells in the bone marrow and spleen of mice. Blood 1992; 79: 1121–1129.

    CAS  PubMed  Google Scholar 

  37. Grzegorzewski K et al. Administration of recombinant human interleukin-7 to mice induces the exportation of myeloid progenitor cells from the bone marrow to peripheral sites. Blood 1994; 83: 377–385.

    CAS  PubMed  Google Scholar 

  38. Dave UP, Jenkins NA, Copeland NG . Gene therapy insertional mutagenesis insights. Science 2004; 303: 333.

    Article  PubMed  Google Scholar 

  39. Nolan GP, Shatzman AR . Expression vectors and delivery systems. Curr Opin Biotechnol 1998; 9: 447–450.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R Wyles for technical assistance, K Noer for flow cytometry and J Oppenheim for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, Q., Li, WQ., Aiello, F. et al. Retroviral transduction of IL-7Rα into IL-7Rα−/− bone marrow progenitors: correction of lymphoid deficiency and induction of neutrophilia. Gene Ther 12, 1761–1768 (2005). https://doi.org/10.1038/sj.gt.3302558

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302558

Keywords

This article is cited by

Search

Quick links