Abstract
The potential contribution of microbial metabolism to the magnetization of sediments has only recently been recognized. In the presence of oxygen, magnetotactic bacteria can form intracellular chains of magnetite while using oxygen or nitrate as the terminal electron acceptor for metabolism1. The production of ultrafine-grained magnetite by magnetotactic bacteria in surficial aerobic sediments may contribute significantly to the natural remanent magnetism of sediments2–4. However, recent studies on iron reduction in anaerobic sediments suggested that bacteria can also generate magnetite in the absence of oxygen5. We report here on a sediment organism, designated GS-15, which produces copious quantities of ultrafine-grained magnetite under anaerobic conditions. GS-15 is not magnetotactic, but reduces amorphic ferric oxide to extracellular magnetite during the reduction of ferric iron as the terminal electron acceptor for organic matter oxidation. This novel metabolism may be the mechanism for the formation of ultrafine-grained magnetite in anaerobic sediments, and couldaccount for the accumulation of magnetite in ancient iron formations and hydrocarbon deposits.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Magnetic signatures of a creosote oil contaminated site: case study in São Paulo, Brazil
Scientific Reports Open Access 17 December 2022
-
Oligocene moisture variations as evidenced by an aeolian dust sequence in Inner Mongolia, China
Scientific Reports Open Access 04 April 2022
-
Bacterial extracellular electron transfer: a powerful route to the green biosynthesis of inorganic nanomaterials for multifunctional applications
Journal of Nanobiotechnology Open Access 27 April 2021
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout
References
1. Blakemore, R. P., Short, K. A., Bazylinski, D. A., Rosenblatt, C. & Frankel, R. B Geomicrobiol. J. 4, 53-71 (1985). 2. Stolz, J. R, Chang, S.-B. R. & Kirschvink, J. L. Nature 321, 849-851 (1986). 3. Stolz, J. F., Chang, S.-B. R. & Kirschvink, J. L. in Proceedings of the 5th International Symposium on Biomineralization (ed. Crick, R.) (Chicago University Press, Chicago, in the press). 4. Chang, S.-B. R., Stolz, J. F. & Kirschvink, J. L. Phys. Earth Planet. Int. (in the press). 5. Lovley, D. R. & Phillips, E. J. P. Appl Envir. Microbiol. 52, 751-757 (1986). 6. Lovley, D. R. & Phillips, E. J. P. Appl. Envir. Microbiol 51, 683-689 (1986). 7. Lovley, D. R. Geomicrobiol. J. 5, 375-399 (1987). 8. National Bureau of Standards, Mongraph 25, Sec. 5, 31 (1967). 9. Chang, S.-B. R. & Kirschvink, J. L. in Magnetite Biomineralization and Magnetoreception in Organisms (eds Kirschvink, J. L. et al) 647-669 (Plenum, New York, 1985). 10. Fuller, M., Goree, W. S. & Goodman, W. L. in Magnetite Biomineralization and Magnetoreception in Organisms (eds Kirschvink, J. L. et aL) 103-151 (Plenum, New York, 1985). 11. Lowrie, W. & Fuller, M. J. Geophys. Res. 76, 6339-6349 (1971). 12. Johnson, H. P., Lowrie, W. & Kent, D. V. Geophys. J. R. Astr. Soc. 41, 1-10 (1975). 13. Kirschvink, J. L. & Chang, S.-B. R. Geology 12, 559-562 (1984). 14. Petersen, N., von Dobeneck, T. & Vali, H. Nature 320, 611-615 (1986). 15. Karlin, R., Lyle, M. & Heath, G. R. Nature 326, 490-493 (1987). 16. Perry, E. C., Tan, F. C. & Morey, G. B. Econ. Geol 68, 1110-1125 (1973). 17. Baur, M. E., Hayes, J. M., Studley, S. A., & Walter, M. R. Econ. Geol. 80, 270-282 (1985). 18. Frankel, R. B. Nature 320, 575 (1986). 19. Walker, J. C. G. Nature 304, 340-342 (1984). 20. Elmore, R. D. et al. Nature 325, 428-430 (1987).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Lovley, D., Stolz, J., Nord, G. et al. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 330, 252–254 (1987). https://doi.org/10.1038/330252a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/330252a0
This article is cited by
-
Oligocene moisture variations as evidenced by an aeolian dust sequence in Inner Mongolia, China
Scientific Reports (2022)
-
Magnetic signatures of a creosote oil contaminated site: case study in São Paulo, Brazil
Scientific Reports (2022)
-
Electromicrobiology: the ecophysiology of phylogenetically diverse electroactive microorganisms
Nature Reviews Microbiology (2022)
-
Artificial Neural Network Modeling of Fungus-Mediated Extracellular Biosynthesis of Zirconium Nanoparticles Using Standard Penicillium spp.
Journal of Cluster Science (2022)
-
Bacterial extracellular electron transfer: a powerful route to the green biosynthesis of inorganic nanomaterials for multifunctional applications
Journal of Nanobiotechnology (2021)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.