Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Intracellular trafficking of adeno-associated viral vectors

Abstract

Adeno-associated virus (AAV) has attracted considerable interest as a gene therapy vector over the past decade. In all, 85% of the current 2052 PubMed references on AAV (as of December 2004) have been published in the last 10 years. As researchers have moved forward with using this vector system for gene delivery, an increased appreciation for the complexities of AAV biology has emerged. The biology of recombinant AAV (rAAV) transduction has demonstrated considerable diversity in different cell types and target tissues. This review will summarize the current understanding of events that control rAAV transduction following receptor binding and leading to nuclear uptake. These stages are broadly classified as intracellular trafficking and have been found to be a major rate-limiting step in rAAV transduction for many cell types. Advances in understanding this area of rAAV biology will help to improve the efficacy of this vector system for the treatment of inherited and acquired diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Blacklow NR . Adeno-associated viruses of human. In: Pattison JR (ed). Parvoviruses and Human Disease. CRC Press: Boca Raton, FL, 1988, pp 165–174.

    Google Scholar 

  2. Berns KI, Giraud C . Biology of adeno-associated virus. Curr Top Microbiol Immunol 1996; 218: 1–23.

    CAS  PubMed  Google Scholar 

  3. Fisher RE, Mayor HD . The evolution of defective and autonomous parvoviruses. J Theor Biol 1991; 149: 429–439.

    CAS  PubMed  Google Scholar 

  4. Atchison RW, Casto BC, Hammon WM . Electron microscopy of adenovirus-associated virus (AAV) in cell cultures. Virology 1966; 29: 353–357.

    CAS  PubMed  Google Scholar 

  5. Hoggan MD, Blacklow NR, Rowe WP . Studies of small DNA viruses found in various adenovirus preparations: physical, biological, and immunological characteristics. Proc Natl Acad Sci USA 1966; 55: 1467–1474.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lusby E, Fife KH, Berns KI . Nucleotide sequence of the inverted terminal repetition in adeno-associated virus DNA. J Virol 1980; 34: 402–409.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Rose JA, Berns KI, Hoggan MD, Koczot FJ . Evidence for a single-stranded adenovirus-associated virus genome: formation of a DNA density hybrid on release of viral DNA. Proc Natl Acad Sci USA 1969; 64: 863–869.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Mendelson E, Trempe JP, Carter BJ . Identification of the trans-acting Rep proteins of adeno-associated virus by antibodies to a synthetic oligopeptide. J Virol 1986; 60: 823–832.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Trempe JP, Carter BJ . Alternate mRNA splicing is required for synthesis of adeno-associated virus VP1 capsid protein. J Virol 1988; 62: 3356–3363.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Buller RM, Rose JA . Characterization of adenovirus-associated virus-induced polypeptides in KB cells. J Virol 1978; 25: 331–338.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Muzyczka N . Use of adeno-associated virus as a general transduction vector for mammalian cells. Curr Top Microbiol Immunol 1992; 158: 97–129.

    CAS  PubMed  Google Scholar 

  12. Linden RM, Berns KI . Molecular biology of adeno-associated viruses. Contrib Microbiol 2000; 4: 68–84.

    CAS  PubMed  Google Scholar 

  13. Samulski RJ, Berns KI, Tan M, Muzyczka N . Cloning of adeno-associated virus into pBR322: rescue of intact virus from the recombinant plasmid in human cells. Proc Natl Acad Sci USA 1982; 79: 2077–2081.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Laughlin CA, Tratschin JD, Coon H, Carter BJ . Cloning of infectious adeno-associated virus genomes in bacterial plasmids. Gene 1983; 23: 65–73.

    CAS  PubMed  Google Scholar 

  15. Grimm D, Kay MA . From virus evolution to vector revolution: use of naturally occurring serotypes of adeno-associated virus (AAV) as novel vectors for human gene therapy. Curr Gene Ther 2003; 3: 281–304.

    Article  CAS  PubMed  Google Scholar 

  16. Mori S, Wang L, Takeuchi T, Kanda T . Two novel adeno-associated viruses from cynomolgus monkey: pseudotyping characterization of capsid protein. Virology 2004; 330: 375–383.

    CAS  PubMed  Google Scholar 

  17. Duan D et al. Enhancement of muscle gene delivery with pseudotyped adeno-associated virus type 5 correlates with myoblast differentiation. J Virol 2001; 75: 7662–7671.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Rabinowitz JE et al. Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J Virol 2002; 76: 791–801.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Auricchio A et al. Noninvasive gene transfer to the lung for systemic delivery of therapeutic proteins. J Clin Invest 2002; 110: 499–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Grimm D et al. Preclinical in vivo evaluation of pseudotyped adeno-associated virus vectors for liver gene therapy. Blood 2003; 102: 2412–2419.

    CAS  PubMed  Google Scholar 

  21. Yan Z, Zak R, Zhang Y, Engelhardt JF . Inverted terminal repeat sequences are important for intermolecular recombination and circularization of adeno-associated virus genomes. J Virol 2005; 79: 364–379.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Bowles DE, Rabinowitz JE, Samulski RJ . Marker rescue of adeno-associated virus (AAV) capsid mutants: a novel approach for chimeric AAV production. J Virol 2003; 77: 423–432.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hauck B, Chen L, Xiao W . Generation and characterization of chimeric recombinant AAV vectors. Mol Ther 2003; 7: 419–425.

    CAS  PubMed  Google Scholar 

  24. Rabinowitz JE et al. Cross-dressing the virion: the transcapsidation of adeno-associated virus serotypes functionally defines subgroups. J Virol 2004; 78: 4421–4432.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Girod A et al. Genetic capsid modifications allow efficient re-targeting of adeno-associated virus type 2. Nat Med 1999; 5: 1052–1056.

    CAS  PubMed  Google Scholar 

  26. Buning H et al. Receptor targeting of adeno-associated virus vectors. Gene Therapy 2003; 10: 1142–1151.

    CAS  PubMed  Google Scholar 

  27. Grifman M et al. Incorporation of tumor-targeting peptides into recombinant adeno-associated virus capsids. Mol Ther 2001; 3: 964–975.

    CAS  PubMed  Google Scholar 

  28. Wu P et al. Mutational analysis of the adeno-associated virus type 2 (AAV2) capsid gene and construction of AAV2 vectors with altered tropism. J Virol 2000; 74: 8635–8647.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bartlett JS, Kleinschmidt J, Boucher RC, Samulski RJ . Targeted adeno-associated virus vector transduction of nonpermissive cells mediated by a bispecific F(ab′gamma)2 antibody. Nat Biotechnol 1999; 17: 181–186.

    CAS  PubMed  Google Scholar 

  30. Ponnazhagan S et al. Conjugate-based targeting of recombinant adeno-associated virus type 2 vectors by using avidin-linked ligands. J Virol 2002; 76: 12900–12907.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Carter B, Burstein H, Peluso RW . Adeno-Associated Virus and AAV Vectors for Gene Delivery (in Series: Gene and Cell Therapy : Therapeutic Mechanisms and Strategies). Marcel Dekker: New York, 2004, pp 71–101.

    Google Scholar 

  32. Duan D et al. Endosomal processing limits gene transfer to polarized airway epithelia by adeno-associated virus. J Clin Invest 2000; 105: 1573–1587.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Douar AM, Poulard K, Stockholm D, Danos O . Intracellular trafficking of adeno-associated virus vectors: routing to the late endosomal compartment and proteasome degradation. J Virol 2001; 75: 1824–1833.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ding W et al. Second-strand genome conversion of adeno-associated virus type 2 (AAV-2) and AAV-5 is not rate limiting following apical infection of polarized human airway epithelia. J Virol 2003; 77: 7361–7366.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Yan Z et al. Distinct classes of proteasome-modulating agents cooperatively augment recombinant adeno-associated virus type 2 and type 5-mediated transduction from the apical surfaces of human airway epithelia. J Virol 2004; 78: 2863–2874.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Xiao W et al. Adenovirus-facilitated nuclear translocation of adeno-associated virus type 2. J Virol 2002; 76: 11505–11517.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hansen J et al. Impaired intracellular trafficking of adeno-associated virus type 2 vectors limits efficient transduction of murine fibroblasts. J Virol 2000; 74: 992–996.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hansen J, Qing K, Srivastava A . Adeno-associated virus type 2-mediated gene transfer: altered endocytic processing enhances transduction efficiency in murine fibroblasts. J Virol 2001; 75: 4080–4090.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Summerford C, Samulski RJ . Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol 1998; 72: 1438–1445.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Sanlioglu S et al. Endocytosis and nuclear trafficking of adeno-associated virus type 2 are controlled by rac1 and phosphatidylinositol-3 kinase activation. J Virol 2000; 74: 9184–9196.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Opie SR et al. Identification of amino acid residues in the capsid proteins of adeno-associated virus type 2 that contribute to heparan sulfate proteoglycan binding. J Virol 2003; 77: 6995–7006.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Xie Q et al. The atomic structure of adeno-associated virus (AAV-2), a vector for human gene therapy. Proc Natl Acad Sci USA 2002; 99: 10405–10410.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Handa A et al. Adeno-associated virus (AAV)-3-based vectors transduce haematopoietic cells not susceptible to transduction with AAV-2-based vectors. J Gen Virol 2000; 81: 2077–2084.

    CAS  PubMed  Google Scholar 

  44. Duan D et al. Polarity influences the efficiency of recombinant adeno-associated virus infection in differentiated airway epithelia. Hum Gene Ther 1998; 9: 2761–2776.

    CAS  PubMed  Google Scholar 

  45. Kaludov N et al. Adeno-associated virus serotype 4 (AAV4) and AAV5 both require sialic acid binding for hemagglutination and efficient transduction but differ in sialic acid linkage specificity. J Virol 2001; 75: 6884–6893.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Walters RW et al. Binding of adeno-associated virus type 5 to 2,3-linked sialic acid is required for gene transfer. J Biol Chem 2001; 21: 21.

    Google Scholar 

  47. Negishi A et al. Analysis of the interaction between adeno-associated virus and heparan sulfate using atomic force microscopy. Glycobiology 2004; 14: 969–977.

    CAS  PubMed  Google Scholar 

  48. Halbert CL, Allen JM, Miller AD . Adeno-associated virus type 6 (AAV6) vectors mediate efficient transduction of airway epithelial cells in mouse lungs compared to that of AAV2 vectors. J Virol 2001; 75: 6615–6624.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Gao GP et al. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci USA 2002; 99: 11854–11859.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Summerford C, Bartlett JS, Samulski RJ . AlphaVbeta5 integrin: a co-receptor for adeno-associated virus type 2 infection. Nat Med 1999; 5: 78–82.

    CAS  PubMed  Google Scholar 

  51. Qing K et al. Human fibroblast growth factor receptor 1 is a co-receptor for infection by adeno-associated virus 2. Nat Med 1999; 5: 71–77.

    CAS  PubMed  Google Scholar 

  52. Qiu J, Mizukami H, Brown KE . Adeno-associated virus 2 co-receptors? [letter]. Nat Med 1999; 5: 467–468.

    CAS  PubMed  Google Scholar 

  53. Qiu J, Brown KE . Integrin alphaVbeta5 is not involved in adeno-associated virus type 2 (AAV2) infection. Virology 1999; 264: 436–440.

    CAS  PubMed  Google Scholar 

  54. Di Pasquale G et al. Identification of PDGFR as a receptor for AAV-5 transduction. Nat Med 2003; 9: 1306–1312.

    CAS  PubMed  Google Scholar 

  55. Hosang M . Characterization of a platelet-derived growth factor receptor on Swiss 3T3 cells by affinity crosslinking. J Recept Res 1988; 8: 455–466.

    CAS  PubMed  Google Scholar 

  56. Daniel TO, Milfay DF, Escobedo J, Williams LT . Biosynthetic and glycosylation studies of cell surface platelet-derived growth factor receptors. J Biol Chem 1987; 262: 9778–9784.

    CAS  PubMed  Google Scholar 

  57. Burger C et al. Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol Ther 2004; 10: 302–317.

    CAS  PubMed  Google Scholar 

  58. Duan D et al. Dynamin is required for recombinant adeno-associated virus type 2 infection. J Virol 1999; 73: 10371–10376.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Bartlett JS, Wilcher R, Samulski RJ . Infectious entry pathway of adeno-associated virus and adeno-associated virus vectors. J Virol 2000; 74: 2777–2785.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Bantel-Schaal U, Hub B, Kartenbeck J . Endocytosis of adeno-associated virus type 5 leads to accumulation of virus particles in the Golgi compartment. J Virol 2002; 76: 2340–2349.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Parker JS et al. Canine and feline parvoviruses can use human or feline transferrin receptors to bind, enter, and infect cells. J Virol 2001; 75: 3896–3902.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Parker JS, Parrish CR . Cellular uptake and infection by canine parvovirus involves rapid dynamin-regulated clathrin-mediated endocytosis, followed by slower intracellular trafficking. J Virol 2000; 74: 1919–1930.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Seisenberger G et al. Real-time single-molecule imaging of the infection pathway of an adeno-associated virus. Science 2001; 294: 1929–1932.

    CAS  PubMed  Google Scholar 

  64. Vihinen-Ranta M et al. Intracellular route of canine parvovirus entry. J Virol 1998; 72: 802–806.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Pajusola K et al. Cell-type-specific characteristics modulate the transduction efficiency of adeno-associated virus type 2 and restrain infection of endothelial cells. J Virol 2002; 76: 11530–11540.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Yan Z et al. Ubiquitination of both adeno-associated virus type 2 and 5 capsid proteins affects the transduction efficiency of recombinant vectors. J Virol 2002; 76: 2043–2053.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Ros C, Burckhardt CJ, Kempf C . Cytoplasmic trafficking of minute virus of mice: low-pH requirement, routing to late endosomes, and proteasome interaction. J Virol 2002; 76: 12634–12645.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Ros C, Kempf C . The ubiquitin–proteasome machinery is essential for nuclear translocation of incoming minute virus of mice. Virology 2004; 324: 350–360.

    CAS  PubMed  Google Scholar 

  69. Zerial M, McBride H . Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2001; 2: 107–117.

    CAS  PubMed  Google Scholar 

  70. Pfeffer SR . Rab GTPases: specifying and deciphering organelle identity and function. Trends Cell Biol 2001; 11: 487–491.

    CAS  PubMed  Google Scholar 

  71. Bucci C et al. Rab7: a key to lysosome biogenesis. Mol Cell Biol 2000; 11: 467–480.

    CAS  Google Scholar 

  72. Trischler M, Stoorvogel W, Ullrich O . Biochemical analysis of distinct Rab5- and Rab11-positive endosomes along the transferrin pathway. J Cell Sci 1999; 112: 4773–4783.

    CAS  PubMed  Google Scholar 

  73. Diaz E, Schimmoller F, Pfeffer SR . A novel Rab9 effector required for endosome-to-TGN transport. J Cell Biol 1997; 138: 283–290.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Barbero P, Bittova L, Pfeffer SR . Visualization of Rab9-mediated vesicle transport from endosomes to the trans-Golgi in living cells. J Cell Biol 2002; 156: 511–518.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Wilcke M et al. Rab11 regulates the compartmentalization of early endosomes required for efficient transport from early endosomes to the trans-golgi network. J Cell Biol 2000; 151: 1207–1220.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Ren M et al. Hydrolysis of GTP on rab11 is required for the direct delivery of transferrin from the pericentriolar recycling compartment to the cell surface but not from sorting endosomes. Proc Natl Acad Sci USA 1998; 95: 6187–6192.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Sonnichsen B et al. Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of Rab4, Rab5, and Rab11. J Cell Biol 2000; 149: 901–913.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Suikkanen S et al. Release of canine parvovirus from endocytic vesicles. Virology 2003; 316: 267–280.

    CAS  PubMed  Google Scholar 

  79. Girod A et al. The VP1 capsid protein of adeno-associated virus type 2 is carrying a phospholipase A2 domain required for virus infectivity. J Gen Virol 2002; 83: 973–978.

    CAS  PubMed  Google Scholar 

  80. Hansen J, Qing K, Srivastava A . Infection of purified nuclei by adeno-associated virus 2. Mol Ther 2001; 4: 289–296.

    CAS  PubMed  Google Scholar 

  81. Hoque M et al. Nuclear transport of the major capsid protein is essential for adeno-associated virus capsid formation. J Virol 1999; 73: 7912–7915.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Qiu J, Brown KE . A 110-kDa nuclear shuttle protein, nucleolin, specifically binds to adeno-associated virus type 2 (AAV-2) capsid. Virology 1999; 257: 373–382.

    CAS  PubMed  Google Scholar 

  83. Thomas CE, Storm TA, Huang Z, Kay MA . Rapid uncoating of vector genomes is the key to efficient liver transduction with pseudotyped adeno-associated virus vectors. J Virol 2004; 78: 3110–3122.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Lowenstein PR . Input virion proteins: cryptic targets of antivector immune responses in preimmunized subjects. Mol Ther 2004; 9: 771–774.

    CAS  PubMed  Google Scholar 

  85. Walters RW et al. Structure of adeno-associated virus serotype 5. J Virol 2004; 78: 3361–3371.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Warrington Jr KH et al. Adeno-associated virus type 2 VP2 capsid protein is nonessential and can tolerate large peptide insertions at its N terminus. J Virol 2004; 78: 6595–6609.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Fraefel C et al. Spatial and temporal organization of adeno-associated virus DNA replication in live cells. J Virol 2004; 78: 389–398.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research support in the area of this review has been derived from NIH RO1 HL58340 (JFE). We also thank Dr Greg Leno and Mariah Steele for editorial assistance with this paper.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, W., Zhang, L., Yan, Z. et al. Intracellular trafficking of adeno-associated viral vectors. Gene Ther 12, 873–880 (2005). https://doi.org/10.1038/sj.gt.3302527

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302527

Keywords

This article is cited by

Search

Quick links