Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Newborn liver gene transfer by an HIV-2-based lentiviral vector

Abstract

Newborn gene therapy, because it can prevent the damage caused by the onset of a disease, deserves specific attention. To evaluate gene transfer in tissues of newborn mice, we used a human immunodeficiency virus (HIV)-2 based lentiviral vector pseudotyped with vesicular stomatitis virus G glycoprotein expressing the green fluorescent protein reporter gene under the control of the cytomegalovirus promoter. We found that very low doses of HIV-2 could infect and be expressed in newborn mice. Under these conditions, the virus was preferentially expressed in the liver and hepatocytes were the predominant target. The treatment was not toxic, the infected liver cells proliferated and the transduced gene was stably expressed. Adult mice could be infected by HIV-2, but the vector was detected in the liver only utilizing the sensitive method of polymerase chain reaction coupled with Southern blot. Direct comparison between newborn and adult recipients demonstrated a much greater efficiency of liver transduction in the newborn mouse. These results indicate that the combination of early intervention and low multiplicity of infection may be a strategy for preferentially and efficiently targeting newborn liver for gene therapy applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Kay MA, Glorioso JC, Naldini L . Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med 2001; 7: 33–40.

    Article  CAS  PubMed  Google Scholar 

  2. Xu L et al. Neonatal or hepatocyte growth factor-potentiated adult gene therapy with a retroviral vector results in therapeutic levels of canine factor IX for hemophilia B. Blood 2003; 101: 3924–3932.

    Article  CAS  PubMed  Google Scholar 

  3. Kohn DB, Parkman R . Gene therapy for newborns. FASEB J 1997; 11: 635–639.

    Article  CAS  PubMed  Google Scholar 

  4. Tanswell AK, O'Brodovich HM . The present and future role of gene therapy in the newborn. Curr Opin Pediatr 1997; 9: 141–145.

    Article  CAS  PubMed  Google Scholar 

  5. Ponder KP et al. Therapeutic neonatal hepatic gene therapy in mucopolysacchardidosis VII dogs. Proc Nat Acad Sci 2002; 99: 13102–13107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xu L et al. Transduction of hepatocyte after neonatal delivery of Moloney murine Leukemia virus based retroviral vector results in long-term expression of b-glucuronidase in Mucopolysaccharidosis VII Dogs. Mol Ther 2002; 5/2: 141–153.

    Article  Google Scholar 

  7. Zanjani ED, Anderson WF . Prospects for in utero human gene therapy. Science 1999; 285: 2084–2088.

    Article  CAS  PubMed  Google Scholar 

  8. Fletcher JC, Richter G . Human fetal gene therapy: moral and ethical questions. Hum Gene Ther 1996; 7: 1605–1614.

    Article  CAS  PubMed  Google Scholar 

  9. Senut MC, Gage FH . Prenatal gene therapy: can the technical hurdles be overcome? Mol Med Today 1999; 5: 152–156.

    Article  CAS  PubMed  Google Scholar 

  10. Zingone A et al. Correction of glycogen storage disease type 1a in a mouse model by gene therapy. J Biol Chem 2000; 275: 828–832.

    Article  CAS  PubMed  Google Scholar 

  11. Sun MS et al. Sustained hepatic and renal glucose-6-phosphatase expression corrects glycogen storage disease type Ia in mice. Hum Mol Genet 2002; 11: 2155–2164.

    Article  CAS  PubMed  Google Scholar 

  12. Naldini L et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996; 272: 263–267.

    Article  CAS  PubMed  Google Scholar 

  13. Emerman M . Learning from lentiviruses. Nat Genet 2000; 24: 8–9.

    Article  CAS  PubMed  Google Scholar 

  14. Villani GR et al. Correction of mucopolysaccharidosis type IIIb fibroblasts by lentiviral vector-mediated gene transfer. Biochem J 2002; 364: 747–753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kafri T et al. Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors. Nat Genet 1997; 17: 314–317.

    Article  CAS  PubMed  Google Scholar 

  16. Mochizuki H et al. High-titer human immunodeficiency virus type 1-based vector systems for gene delivery into nondividing cells. J Virol 1998; 72: 8873–8883.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Chinnasamy D et al. Lentiviral-mediated gene transfer into human lymphocytes: role of HIV-1 accessory proteins. Blood 2000; 96: 1309–1316.

    CAS  PubMed  Google Scholar 

  18. Sutton RE, Reitsma MJ, Uchida N, Brown PO . Transduction of human progenitor hematopoietic stem cells by human immunodeficiency virus type 1-based vectors is cell cycle dependent. J Virol 1999; 73: 3649–3660.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ohashi K, Park F, Kay MA . Role of hepatocyte direct hyperplasia in lentivirus-mediated liver transduction in vivo. Hum Gene Ther 2002; 13: 653–663.

    Article  CAS  PubMed  Google Scholar 

  20. Park F et al. Efficient lentiviral transduction of liver requires cell cycling in vivo. Nat Genet 2000; 24: 49–52.

    Article  CAS  PubMed  Google Scholar 

  21. D'Costa J et al. Human immunodeficiency virus type 2 lentiviral vectors: packaging signal and splice donor in expression and encapsidation. J Gen Virol 2001; 82: 425–434.

    Article  CAS  PubMed  Google Scholar 

  22. D'Costa J et al. HIV-2 derived lentiviral vectors: gene transfer in Parkinson's and Fabry disease models in vitro. J Med Virol 2003; 71: 173–182.

    Article  CAS  PubMed  Google Scholar 

  23. Fletcher III TM et al. Nuclear import and cell cycle arrest functions of the HIV-1 Vpr protein are encoded by two separate genes in HIV-2/SIV(SM). EMBO J 1996; 15: 6155–6165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Di Marzio P et al. Mutational analysis of cell cycle arrest, nuclear localization and virion packaging of human immunodeficiency virus type 1 Vpr. J Virol 1995; 69: 7909–7916.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Rogel ME, Wu LI, Emerman M . The human immunodeficiency virus type 1 vpr gene prevents cell proliferation during chronic infection. J Virol 1995; 69: 882–888.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Mahalingam S et al. Nuclear import, virion incorporation, and cell cycle arrest/differentiation are mediated by distinct functional domains of human immunodeficiency virus type 1 Vpr. J Virol 1997; 71: 6339–6347.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kanki PJ et al. Slower heterosexual spread of HIV-2 than HIV-1. Lancet 1994; 343: 943–946.

    Article  CAS  PubMed  Google Scholar 

  28. Marlink R et al. Reduced rate of disease development after HIV-2 infection as compared to HIV-1. Science 1994; 265: 1587–1590.

    Article  CAS  PubMed  Google Scholar 

  29. Zhao J et al. Lentiviral vectors for delivery of genes into neonatal and adult ventricular cardiac myocytes in vitro and in vivo. Basic Res Cardiol 2002; 97: 348–358.

    Article  CAS  PubMed  Google Scholar 

  30. Bennett KL et al. Most highly repeated dispersed DNA families in the mouse genome. Mol Cell Biol 1984; 4: 1561–1571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kalpana GV . Retroviral vectors for liver-directed gene therapy. Semin Liver Dis 1999; 19: 27–37.

    Article  CAS  PubMed  Google Scholar 

  32. VandenDriessche T et al. Lentiviral vectors containing the human immunodeficiency virus type-1 central polypurine tract can efficiently transduce nondividing hepatocytes and antigen-presenting cells in vivo. Blood 2002; 100: 813–822.

    Article  CAS  PubMed  Google Scholar 

  33. Follenzi A et al. Efficient gene delivery and targeted expression to hepatocytes in vivo by improved lentiviral vectors. Hum Gene Ther 2002; 13: 243–260.

    Article  CAS  PubMed  Google Scholar 

  34. Pan D et al. Biodistribution and toxicity studies of VSVG-pseudotyped lentiviral vector after intravenous administration in mice with the observation of in vivo transduction of bone marrow. Mol Ther 2002; 6: 19–29.

    Article  CAS  PubMed  Google Scholar 

  35. Nguyen TH et al. Highly efficient lentiviral vector-mediated transduction of nondividing, fully reimplantable primary hepatocytes. Mol Ther 2002; 6: 199–209.

    Article  CAS  PubMed  Google Scholar 

  36. Nash KL et al. Hepatocyte-specific gene expression from integrated lentiviral vectors. J Gene Med 2004; 6: 974–983.

    Article  CAS  PubMed  Google Scholar 

  37. Follenzi A et al. Targeting lentiviral vector expression to hepatocytes limits transgene-specific immune response and establishes long-term expression of human antihemophilic factor IX in mice. Blood 2004; 103: 3700–3709.

    Article  CAS  PubMed  Google Scholar 

  38. MacKenzie TC et al. Efficient transduction of liver and muscle after in utero injection of lentiviral vectors with different pseudotypes. Mol Ther 2002; 6: 349–358.

    Article  CAS  PubMed  Google Scholar 

  39. VandenDriessche T et al. Long-term expression of human coagulation factor VIII and correction of hemophilia A after in vivo retroviral gene transfer in factor VIII-deficient mice. Proc Natl Acad Sci USA 1999; 96: 10379–10384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Park F, Kay MA . Modified HIV-1 based lentiviral vectors have an effect on viral transduction efficiency and gene expression in vitro and in vivo. Mol Ther 2001; 4: 164–173.

    Article  CAS  PubMed  Google Scholar 

  41. Ouyang J, Alway SE . Transgene expression in hypertrophied and aged skeletal muscle in vivo by lentivirus delivery. J Gene Med 2004; 6: 278–287.

    Article  CAS  PubMed  Google Scholar 

  42. Kobinger GP et al. Correction of the dystrophic phenotype by in vivo targeting of muscle progenitor cells. Hum Gene Ther 2003; 14: 1441–1449.

    Article  CAS  PubMed  Google Scholar 

  43. Blomer U et al. Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J Virol 1997; 71: 6641–6649.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zufferey R et al. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 1997; 15: 871–875.

    Article  CAS  PubMed  Google Scholar 

  45. Bensadoun JC et al. Lentiviral vectors as a gene delivery system in the mouse midbrain: cellular and behavioral improvements in a 6-OHDA model of Parkinson's disease using GDNF. Exp Neurol 2000; 164: 15–24.

    Article  CAS  PubMed  Google Scholar 

  46. Hottinger AF et al. Complete and long-term rescue of lesioned adult motoneurons by lentiviral-mediated expression of glial cell line-derived neurotrophic factor in the facial nucleus. J Neurosci 2000; 20: 5587–5593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kafri T, van Praag H, Gage FH, Verma IM . Lentiviral vectors: regulated gene expression. Mol Ther 2000; 1: 516–521.

    Article  CAS  PubMed  Google Scholar 

  48. Vogel R et al. A single lentivirus vector mediates doxycycline-regulated expression of transgenes in the brain. Hum Gene Ther 2004; 15: 157–165.

    Article  CAS  PubMed  Google Scholar 

  49. Fleury S et al. Multiply attenuated, self-inactivating lentiviral vectors efficiently deliver and express genes for extended periods of time in adult rat cardiomyocytes in vivo. Circulation 2003; 107: 2375–2382.

    Article  CAS  PubMed  Google Scholar 

  50. Peng KW et al. Organ distribution of gene expression after intravenous infusion of targeted and untargeted lentiviral vectors. Gene Therapy 2001; 8: 1456–1463.

    Article  CAS  PubMed  Google Scholar 

  51. Gusella GL et al. Lentiviral gene transduction of kidney. Hum Gene Ther 2002; 13: 407–414.

    Article  CAS  PubMed  Google Scholar 

  52. Schroers R et al. Transduction of human PBMC-derived dendritic cells and macrophages by an HIV-1-based lentiviral vector system. Mol Ther 2000; 1: 171–179.

    Article  CAS  PubMed  Google Scholar 

  53. Mordelet E et al. Brain engraftment of autologous macrophages transduced with a lentiviral flap vector: an approach to complement brain dysfunctions. Gene Therapy 2002; 9: 46–52.

    Article  CAS  PubMed  Google Scholar 

  54. Woods NB et al. Lentiviral vector transduction of NOD/SCID repopulating cells results in multiple vector integrations per transduced cell: risk of insertional mutagenesis. Blood 2003; 101: 1284–1289.

    Article  CAS  PubMed  Google Scholar 

  55. Lu Y et al. Efficient gene transfer into human monocyte-derived macrophages using defective lentiviral vectors. Cell Mol Biol 2003; 49: 1151–1156.

    CAS  PubMed  Google Scholar 

  56. Pfeifer A et al. Transduction of liver cells by lentiviral vectors: analysis in living animals by fluorescence imaging. Mol Ther 2001; 3: 319–322.

    Article  CAS  PubMed  Google Scholar 

  57. Park F, Ohashi K, Kay MA . The effect of age on hepatic gene transfer with self-inactivating lentiviral vectors in vivo. Mol Ther 2003; 8: 314–323.

    Article  CAS  PubMed  Google Scholar 

  58. Clapp DW, Dumenco LL, Hatzoglou M, Gerson SL . Fetal liver hematopoietic stem cells as a target for in utero retroviral gene transfer. Blood 1991; 78: 1132–1139.

    CAS  PubMed  Google Scholar 

  59. Touraine JL . Perinatal fetal-cell and gene therapy. Int J Immunopharmacol 2000; 22: 1033–1040.

    Article  CAS  PubMed  Google Scholar 

  60. Tarantal AF et al. Lentiviral vector gene transfer into fetal rhesus monkeys (Macaca mulatta): lung-targeting approaches. Mol Ther 2001; 4: 614–621.

    Article  CAS  PubMed  Google Scholar 

  61. Meertens L et al. In utero injection of alpha-L-iduronidase-carrying retrovirus in canine mucopolysaccharidosis type I: infection of multiple tissues and neonatal gene expression. Hum Gene Ther 2002; 13: 1809–1820.

    Article  CAS  PubMed  Google Scholar 

  62. Seppen J et al. Long-term correction of bilirubin UDPglucuronyltransferase deficiency in rats by in utero lentiviral gene transfer. Mol Ther 2003; 8: 593–599.

    Article  CAS  PubMed  Google Scholar 

  63. Chen XG et al. Efficient delivery of human clotting factor IX after injection of lentiviral vectors in utero. Acta Pharmacol Sin 2004; 25: 789–793.

    CAS  PubMed  Google Scholar 

  64. Porada CD, Park P, Almeida-Porada G, Zanjani ED . The sheep model of in utero gene therapy. Fetal Diagn Ther 2004; 19: 23–30.

    Article  PubMed  Google Scholar 

  65. Tsui LV et al. Production of human clotting factor IX without toxicity in mice after vascular delivery of a lentiviral vector. Nat Biotechnol 2002; 20: 53–57.

    Article  CAS  PubMed  Google Scholar 

  66. Grant SG et al. Localization of the mouse Mcf-2 (Dbl) protooncogene within a conserved linkage group on the mouse × chromosome. Cytogenet Cell Genet 1990; 54: 175–181.

    Article  CAS  PubMed  Google Scholar 

  67. Hirsch E et al. Defective dendrite elongation but normal fertility in mice lacking the Rho-like GTPase activator Dbl. Mol Cell Biol 2002; 22: 3140–3148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pastorino S et al. Generation of high-titer retroviral vector-producing macrophages as vehicles for in vivo gene transfer. Gene Therapy 2001; 8: 431–441.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Sandra Pastorino for providing Mirò cell line, Amleto De Santanna (DIMES, Genova, Italy) for the excellent technical support, Dr Simonetta Astigiano (IST, Genova, Italy) and Dr Anna Favre (G Gaslini Institute, Genova, Italy) for helpful suggestions and Ms Chantal Dabizzi for secretarial assistance. This work was supported by grants from the Italian Association for Cancer Research (AIRC), Fondazione Italiana per la Lotta al Neuroblastoma, Associazione Italiana Glicogenosi, Italian Health Ministry, Compagnia di San Paolo (Torino) and COFIN-MIUR (2002).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salani, B., Damonte, P., Zingone, A. et al. Newborn liver gene transfer by an HIV-2-based lentiviral vector. Gene Ther 12, 803–814 (2005). https://doi.org/10.1038/sj.gt.3302473

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302473

Keywords

This article is cited by

Search

Quick links