Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

DNA electrotransfer: its principles and an updated review of its therapeutic applications

Abstract

The use of electric pulses to transfect all types of cells is well known and regularly used in vitro for bacteria and eukaryotic cells transformation. Electric pulses can also be delivered in vivo either transcutaneously or with electrodes in direct contact with the tissues. After injection of naked DNA in a tissue, appropriate local electric pulses can result in a very high expression of the transferred genes. This manuscript describes the evolution in the concepts and the various optimization steps that have led to the use of combinations of pulses that fit with the known roles of the electric pulses in DNA electrotransfer, namely cell electropermeabilization and DNA electrophoresis. A summary of the main applications published until now is also reported, restricted to the in vivo preclinical trials using therapeutic genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Wolff JA et al. Direct gene transfer into mouse muscle in vivo. Science 1990; 247: 1465–1468.

    Article  CAS  PubMed  Google Scholar 

  2. Budker V et al. Hypothesis: naked plasmid DNA is taken up by cells in vivo by a receptor-mediated process. J Gene Med 2000; 2: 76–88.

    CAS  PubMed  Google Scholar 

  3. Satkauskas S, Bureau MF, Mahfoudi A, Mir LM . Slow accumulation of plasmid in muscle cells: supporting evidence for a mechanism of DNA uptake by receptor-mediated endocytosis. Mol Ther 2001; 4: 317–323.

    CAS  PubMed  Google Scholar 

  4. Liu F, Song Y, Liu D . Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Therapy 1999; 6: 1258–1266.

    Article  CAS  PubMed  Google Scholar 

  5. Liu F, Huang L . Improving plasmid DNA-mediated liver gene transfer by prolonging its retention in the hepatic vasculature. J Gene Med 2001; 3: 569–576.

    CAS  PubMed  Google Scholar 

  6. Zhang G et al. Hydroporation as the mechanism of hydrodynamic delivery. Gene Therapy 2004; 11: 675–682.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Udvardi A et al. Uptake of exogenous DNA via the skin. J Mol Med 1999; 77: 744–750.

    Article  CAS  PubMed  Google Scholar 

  8. Godon C, Caboche M, Daniel-Vedele F . Transient plant gene expression: a simple and reproducible method based on flowing particle gun. Biochimie 1993; 75: 591–595.

    CAS  PubMed  Google Scholar 

  9. Furth PA, Shamay A, Wall RJ, Hennighausen L . Gene transfer into somatic tissues by jet injection. Anal Biochem 1992; 205: 365–368.

    Article  CAS  PubMed  Google Scholar 

  10. Walther W et al. Intratumoral low-volume jet-injection for efficient nonviral gene transfer. Mol Biotechnol 2002; 21: 105–115.

    CAS  PubMed  Google Scholar 

  11. Wang G et al. Ultrasound-guided gene transfer to hepatocytes in utero. Fetal Diagn Ther 1998; 13: 197–205.

    PubMed  Google Scholar 

  12. Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH . Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1982; 1: 841–845.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Potter H, Weir L, Leder P . Enhancer-dependent expression of human kappa immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation. Proc Natl Acad Sci USA 1984; 81: 7161–7165.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Puc M et al. Techniques of signal generation required for electropermeabilisation Survey of electropermeabilisation devices. Bioelectrochemistry 2004; 64: 113–124.

    CAS  PubMed  Google Scholar 

  15. Zerbib D, Amalric F, Teissie J . Electric field mediated transformation: isolation and characterization of a TK+ subclone. Biochem Biophys Res Commun 1985; 129: 611–618.

    CAS  PubMed  Google Scholar 

  16. Tieleman DP, Leontiadou H, Mark AE, Marrink SJ . Simulation of pore formation in lipid bilayers by mechanical stress and electric fields. J Am Chem Soc 2003; 125: 6382–6383.

    CAS  PubMed  Google Scholar 

  17. Tsong TY, Su ZD . Biological effects of electric shock and heat denaturation and oxidation of molecules, membranes, and cellular functions. Ann NY Acad Sci 1999; 888: 211–232.

    CAS  PubMed  Google Scholar 

  18. Grasso RJ, Heller R, Cooley JC, Haller EM . Electrofusion of individual animal cells directly to intact corneal epithelial tissue. Biochim Biophys Acta 1989; 980: 9–14.

    CAS  PubMed  Google Scholar 

  19. Heller R, Grasso RJ . Transfer of human membrane surface components by incorporating human cells into intact animal tissue by cell-tissue electrofusion in vivo. Biochim Biophys Acta 1990; 1024: 185–188.

    CAS  PubMed  Google Scholar 

  20. Orlowski S, Belehradek Jr J, Paoletti C, Mir LM . Transient electropermeabilisation of cells in culture. Increase of the cytotoxicity of anticancer drugs. Biochem Pharmacol 1988; 37: 4727–4733.

    CAS  PubMed  Google Scholar 

  21. Mir LM, Orlowski S, Belehradek Jr J, Paoletti C . Electrochemotherapy potentiation of antitumour effect of bleomycin by local electric pulses. Eur J Cancer 1991; 27: 68–72.

    CAS  PubMed  Google Scholar 

  22. Belehradek Jr J et al. Electrochemotherapy of spontaneous mammary tumours in mice. Eur J Cancer 1991; 27: 73–76.

    PubMed  Google Scholar 

  23. Mir LM et al. Electrochemotherapy, a new antitumor treatment: first clinical trial. C R Acad Sci III 1991; 313: 613–618.

    CAS  PubMed  Google Scholar 

  24. Belehradek M et al. Electrochemotherapy, a new antitumor treatment. First clinical phase I–II trial. Cancer 1993; 72: 3694–3700.

    CAS  PubMed  Google Scholar 

  25. Mir LM et al. Effective treatment of cutaneous and subcutaneous malignant tumours by electrochemotherapy. Br J Cancer 1998; 77: 2336–2342.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Gothelf A, Mir LM, Gehl J . Electrochemotherapy: results of cancer treatment using enhanced delivery of bleomycin by electroporation. Cancer Treat Rev 2003; 29: 371–387.

    CAS  PubMed  Google Scholar 

  27. Sersa G, Cemazar M, Rudolf Z . Electrochemotherapy: advantages and drawbacks in treatment of cancer patients. Cancer Ther 2003; 1: 133–142.

    Google Scholar 

  28. Titomirov AV, Sukharev S, Kistanova E . In vivo electroporation and stable transformation of skin cells of newborn mice by plasmid DNA. Biochim Biophys Acta 1991; 1088: 131–134.

    CAS  PubMed  Google Scholar 

  29. Heller R et al. In vivo gene electroinjection and expression in rat liver. FEBS Lett 1996; 389: 225–228.

    CAS  PubMed  Google Scholar 

  30. Rols MP et al. In vivo electrically mediated protein and gene transfer in murine melanoma. Nat Biotechnol 1998; 16: 168–171.

    CAS  PubMed  Google Scholar 

  31. Suzuki T et al. Direct gene transfer into rat liver cells by in vivo electroporation. FEBS Lett 1998; 425: 436–440.

    CAS  PubMed  Google Scholar 

  32. Aihara H, Miyazaki J . Gene transfer into muscle by electroporation in vivo. Nat Biotechnol 1998; 16: 867–870.

    CAS  PubMed  Google Scholar 

  33. Mir LM et al. Long-term, high level in vivo gene expression after electric pulse-mediated gene transfer into skeletal muscle. C R Acad Sci III 1998; 321: 893–899.

    CAS  PubMed  Google Scholar 

  34. Lucas ML, Heller R . Immunomodulation by electrically enhanced delivery of plasmid DNA encoding IL-12 to murine skeletal muscle. Mol Ther 2001; 3: 47–53.

    CAS  PubMed  Google Scholar 

  35. Mir LM et al. High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc Natl Acad Sci USA 1999; 96: 4262–4267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gehl J, Mir LM . Determination of optimal parameters for in vivo gene transfer by electroporation, using a rapid in vivo test for cell permeabilization. Biochem Biophys Res Commun 1999; 261: 377–380.

    CAS  PubMed  Google Scholar 

  37. Gehl J et al. In vivo electroporation of skeletal muscle: threshold, efficacy and relation to electric field distribution. Biochim Biophys Acta 1999; 1428: 233–240.

    CAS  PubMed  Google Scholar 

  38. Bettan M et al. Efficient DNA electrotransfer into tumors. Bioelectrochemistry 2000; 52: 83–90.

    CAS  PubMed  Google Scholar 

  39. Liu F, Huang L . Electric gene transfer to the liver following systemic administration of plasmid DNA. Gene Therapy 2002; 9: 1116–1119.

    CAS  PubMed  Google Scholar 

  40. Lesbordes JC et al. In vivo electrotransfer of the cardiotrophin-1 gene into skeletal muscle slows down progression of motor neuron degeneration in pmn mice. Hum Mol Genet 2002; 11: 1615–1625.

    CAS  PubMed  Google Scholar 

  41. Gehl J, Skovsgaard T, Mir LM . Vascular reactions to in vivo electroporation: characterization and consequences for drug and gene delivery. Biochim Biophys Acta 2002; 1569: 51–58.

    CAS  PubMed  Google Scholar 

  42. Satkauskas S et al. Mechanisms of in vivo DNA electrotransfer: respective contributions of cell electropermeabilisation and DNA electrophoresis. Mol Ther 2002; 5: 133–140.

    CAS  PubMed  Google Scholar 

  43. Bureau MF et al. Importance of association between permeabilization and electrophoretic forces for intramuscular DNA electrotransfer. Biochim Biophys Acta 2000; 1474: 353–359.

    CAS  PubMed  Google Scholar 

  44. Puc M, Flisar K, Rebersek S, Miklavcic D . Electroporator for in vitro cell electropermeabilisation. Radiol Oncol 2001; 35: 203–207.

    Google Scholar 

  45. Zaharoff DA, Barr RC, Li CY, Yuan F . Electromobility of plasmid DNA in tumor tissues during electric field-mediated gene delivery. Gene Therapy 2002; 9: 1286–1290.

    CAS  PubMed  Google Scholar 

  46. Lin CR et al. Electroporation-mediated pain-killer gene therapy for mononeuropathic rats. Gene Therapy 2002; 9: 1247–1253.

    CAS  PubMed  Google Scholar 

  47. Lee TH et al. In vivo electroporation of proopiomelanocortin induces analgesia in a formalin-injection pain model in rats. Pain 2003; 104: 159–167.

    CAS  PubMed  Google Scholar 

  48. Yu DS, Lee CF, Hsieh DS, Chang SY . Antitumor effects of recombinant BCG and interleukin-12 DNA vaccines on xenografted murine bladder cancer. Urology 2004; 63: 596–601.

    PubMed  Google Scholar 

  49. Heller LC, Coppola D . Electrically mediated delivery of vector plasmid DNA elicits an antitumor effect. Gene Therapy 2002; 9: 1321–1325.

    CAS  PubMed  Google Scholar 

  50. Kalat M et al. In vivo plasmid electroporation induces tumor antigen-specific CD8+ T-cell responses and delays tumor growth in a syngeneic mouse melanoma model. Cancer Res 2002; 62: 5489–5494.

    CAS  PubMed  Google Scholar 

  51. Tamura T et al. Intratumoral delivery of interleukin 12 expression plasmids with in vivo electroporation is effective for colon and renal cancer. Hum Gene Ther 2001; 12: 1265–1276.

    CAS  PubMed  Google Scholar 

  52. Tanaka M et al. Inhibition of RL male 1 tumor growth in BALB/c mice by introduction of the RLakt gene coding for antigen recognized by cytotoxic T-lymphocytes and the GM-CSF gene by in vivo electroporation. Cancer Sci 2004; 95: 154–159.

    CAS  PubMed  Google Scholar 

  53. Yamashita YI et al. Electroporation-mediated interleukin-12 gene therapy for hepatocellular carcinoma in the mice model. Cancer Res 2001; 61: 1005–1012.

    CAS  PubMed  Google Scholar 

  54. Lee CF, Chang SY, Hsieh DS, Yu DS . Treatment of bladder carcinomas using recombinant BCG DNA vaccines and electroporative gene immunotherapy. Cancer Gene Ther 2004; 11: 194–207.

    CAS  PubMed  Google Scholar 

  55. Lee CF, Chang SY, Hsieh DS, Yu DS . Immunotherapy for bladder cancer using recombinant bacillus Calmette-Guerin DNA vaccines and interleukin-12 DNA vaccine. J Urol 2004; 171: 1343–1347.

    CAS  PubMed  Google Scholar 

  56. Lucas ML, Heller L, Coppola D, Heller R . IL-12 plasmid delivery by in vivo electroporation for the successful treatment of established subcutaneous B16.F10 melanoma. Mol Ther 2002; 5: 668–675.

    CAS  PubMed  Google Scholar 

  57. Matsubara H et al. Electroporation-mediated transfer of cytokine genes into human esophageal tumors produces anti-tumor effects in mice. Anticancer Res 2001; 21: 2501–2503.

    CAS  PubMed  Google Scholar 

  58. Heller R et al. Intradermal delivery of interleukin-12 plasmid DNA by in vivo electroporation. DNA Cell Biol 2001; 20: 21–26.

    CAS  PubMed  Google Scholar 

  59. Heller L et al. In vivo electroporation of plasmids encoding GM-CSF or interleukin-2 into existing B16 melanomas combined with electrochemotherapy induces long-term antitumour immunity. Melanoma Res 2000; 10: 577–583.

    CAS  PubMed  Google Scholar 

  60. Kishida T et al. In vivo electroporation-mediated transfer of interleukin-12 and interleukin-18 genes induces significant antitumor effects against melanoma in mice. Gene Therapy 2001; 8: 1234–1240.

    CAS  PubMed  Google Scholar 

  61. Kishida T et al. Electrochemo-gene therapy of cancer: intratumoral delivery of interleukin-12 gene and bleomycin synergistically induced therapeutic immunity and suppressed subcutaneous and metastatic melanomas in mice. Mol Ther 2003; 8: 738–745.

    CAS  PubMed  Google Scholar 

  62. Li S et al. Intramuscular electroporation delivery of IFN-alpha gene therapy for inhibition of tumor growth located at a distant site. Gene Therapy 2001; 8: 400–407.

    CAS  PubMed  Google Scholar 

  63. Li S, Zhang X, Xia X . Regression of tumor growth and induction of long-term antitumor memory by interleukin 12 electro-gene therapy. J Natl Cancer Inst 2002; 94: 762–768.

    CAS  PubMed  Google Scholar 

  64. Li S, Xia X, Zhang X, Suen J . Regression of tumors by IFN-alpha electroporation gene therapy and analysis of the responsible genes by cDNA array. Gene Therapy 2002; 9: 390–397.

    CAS  PubMed  Google Scholar 

  65. Zhang GH et al. Gene expression and antitumor effect following im electroporation delivery of human interferon alpha 2 gene. Acta Pharmacol Sin 2003; 24: 891–896.

    CAS  PubMed  Google Scholar 

  66. Lucas ML, Heller R . IL-12 gene therapy using an electrically mediated nonviral approach reduces metastatic growth of melanoma. DNA Cell Biol 2003; 22: 755–763.

    CAS  PubMed  Google Scholar 

  67. Tamura T et al. Combination of IL-12 and IL-18 of electro-gene therapy synergistically inhibits tumor growth. Anticancer Res 2003; 23: 1173–1179.

    CAS  PubMed  Google Scholar 

  68. Chi CH, Wang YS, Lai YS, Chi KH . Anti-tumor effect of in vivo IL-2 and GM-CSF electrogene therapy in murine hepatoma model. Anticancer Res 2003; 23: 315–321.

    CAS  PubMed  Google Scholar 

  69. Heller LC et al. Effect of electrically mediated intratumor and intramuscular delivery of a plasmid encoding IFN alpha on visible B16 mouse melanomas. Technol Cancer Res Treat 2002; 1: 205–209.

    CAS  PubMed  Google Scholar 

  70. Lee SC et al. Inhibition of established subcutaneous and metastatic murine tumors by intramuscular electroporation of the interleukin-12 gene. J Biomed Sci 2003; 10: 73–86.

    CAS  PubMed  Google Scholar 

  71. Baba M, Iishi H, Tatsuta M . Transfer of bcl-xs plasmid is effective in preventing and inhibiting rat hepatocellular carcinoma induced by N-nitrosomorpholine. Gene Therapy 2001; 8: 1149–1156.

    CAS  PubMed  Google Scholar 

  72. Jiang Y et al. Stimulation of mammary tumorigenesis by systemic tissue inhibitor of matrix metalloproteinase 4 gene delivery. Cancer Res 2001; 61: 2365–2370.

    CAS  PubMed  Google Scholar 

  73. Goto T et al. Highly efficient electro-gene therapy of solid tumor by using an expression plasmid for the herpes simplex virus thymidine kinase gene. Proc Natl Acad Sci USA 2000; 97: 354–359.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Mikata K et al. Inhibition of growth of human prostate cancer xenograft by transfection of p53 gene: gene transfer by electroporation. Mol Cancer Ther 2002; 1: 247–252.

    CAS  PubMed  Google Scholar 

  75. Shibata MA, Morimoto J, Otsuki Y . Suppression of murine mammary carcinoma growth and metastasis by HSVtk/GCV gene therapy using in vivo electroporation. Cancer Gene Ther 2002; 9: 16–27.

    CAS  PubMed  Google Scholar 

  76. Hsieh YH et al. Electroporation-mediated and EBV LMP1-regulated gene therapy in a syngenic mouse tumor model. Cancer Gene Ther 2003; 10: 626–636.

    CAS  PubMed  Google Scholar 

  77. Cemazar M et al. Effects of electrogenetherapy with p53wt combined with cisplatin on curvival of human tumor cell lines with different p53 status. DNA Cell Biol 2003; 22: 765–775.

    CAS  PubMed  Google Scholar 

  78. Ivanov MA et al. Enhanced antitumor activity of a combination of MBD2-antisense electrotransfer gene therapy and bleomycin electrochemotherapy. J Gene Med 2003; 5: 893–899.

    CAS  PubMed  Google Scholar 

  79. Slack A et al. Antisense MBD2 gene therapy inhibits tumorigenesis. J Gene Med 2002; 4: 381–389.

    CAS  PubMed  Google Scholar 

  80. Shibata MA, Horiguchi T, Morimoto J, Otsuki Y . Massive apoptotic cell death in chemically induced rat urinary bladder carcinomas following in situ HSVtk electrogene transfer. J Gene Med 2003; 5: 219–231.

    CAS  PubMed  Google Scholar 

  81. Wang F et al. Inhibition of tumor angiogenesis, growth and metastasis by blocking VEGF paracrine pathway]. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 2002; 34: 165–170.

    CAS  Google Scholar 

  82. Yoshizato K et al. Gene delivery with optimized electroporation parameters shows potential for treatment of gliomas. Int J Oncol 2000; 16: 899–905.

    CAS  PubMed  Google Scholar 

  83. Trochon-Joseph V et al. Evidence of antiangiogenic and antimetastatic activities of the recombinant disintegrin domain of metargidin. Cancer Res 2004; 64: 2062–2069.

    CAS  PubMed  Google Scholar 

  84. Niu G et al. Gene therapy with dominant-negative Stat3 suppresses growth of the murine melanoma B16 tumor in vivo. Cancer Res 1999; 59: 5059–5063.

    CAS  PubMed  Google Scholar 

  85. Martel-Renoir D et al. Coelectrotransfer to skeletal muscle of three plasmids coding for antiangiogenic factors and regulatory factors of the tetracycline-inducible system: tightly regulated expression, inhibition of transplanted tumor growth, and antimetastatic effect. Mol Ther 2003; 8: 425–433.

    CAS  PubMed  Google Scholar 

  86. Cichon T et al. Electrotransfer of gene encoding endostatin into normal and neoplastic mouse tissues: inhibition of primary tumor growth and metastatic spread. Cancer Gene Ther 2002; 9: 771–777.

    CAS  PubMed  Google Scholar 

  87. Matsubara H et al. Combinatory anti-tumor effects of electroporation-mediated chemotherapy and wild-type p53 gene transfer to human esophageal cancer cells. Int J Oncol 2001; 18: 825–829.

    CAS  PubMed  Google Scholar 

  88. Mallat Z et al. Interleukin-18/interleukin-18 binding protein signaling modulates atherosclerotic lesion development and stability. Circ Res 2001; 89: E41–E45.

    CAS  PubMed  Google Scholar 

  89. Hase M, Tanaka M, Yokota M, Yamada Y . Reduction in the extent of atherosclerosis in apolipoprotein E-deficient mice induced by electroporation-mediated transfer of the human plasma platelet-activating factor acetylhydrolase gene into skeletal muscle. Prostaglandins Other Lipid Mediators 2002; 70: 107–118.

    CAS  PubMed  Google Scholar 

  90. Silvestre JS et al. Antiangiogenic effect of interleukin-10 in ischemia-induced angiogenesis in mice hindlimb. Circ Res 2000; 87: 448–452.

    CAS  PubMed  Google Scholar 

  91. Tanaka S, Uehara T, Nomura Y . Up-regulation of protein-disulfide isomerase in response to hypoxia/brain ischemia and its protective effect against apoptotic cell death. J Biol Chem 2000; 275: 10388–10393.

    CAS  PubMed  Google Scholar 

  92. Mallat Z et al. Interleukin-18/interleukin-18 binding protein signaling modulates ischemia-induced neovascularization in mice hindlimb. Circ Res 2002; 91: 441–448.

    CAS  PubMed  Google Scholar 

  93. Silvestre JS et al. Vascular endothelial growth factor-B promotes in vivo angiogenesis. Circ Res 2003; 93: 114–123.

    CAS  PubMed  Google Scholar 

  94. Adachi O et al. Gene transfer of Fc-fusion cytokine by in vivo electroporation: application to gene therapy for viral myocarditis. Gene Therapy 2002; 9: 577–583.

    CAS  PubMed  Google Scholar 

  95. Deleuze V, Scherman D, Bureau MF . Interleukin-10 expression after intramuscular DNA electrotransfer: kinetic studies. Biochem Biophys Res Commun 2002; 299: 29–34.

    CAS  PubMed  Google Scholar 

  96. Nakano A et al. Cytokine gene therapy for myocarditis by in vivo electroporation. Hum Gene Ther 2001; 12: 1289–1297.

    CAS  PubMed  Google Scholar 

  97. Watanabe K et al. Protection against autoimmune myocarditis by gene transfer of interleukin-10 by electroporation. Circulation 2001; 104: 1098–1100.

    CAS  PubMed  Google Scholar 

  98. Babiuk S et al. Electroporation improves the efficacy of DNA vaccines in large animals. Vaccine 2002; 20: 3399–3408.

    CAS  PubMed  Google Scholar 

  99. Bachy M et al. Electric pulses increase the immunogenicity of an influenza DNA vaccine injected intramuscularly in the mouse. Vaccine 2001; 19: 1688–1693.

    CAS  PubMed  Google Scholar 

  100. Nomura M et al. In vivo induction of cytotoxic T lymphocytes specific for a single epitope introduced into an unrelated molecule. J Immunol Methods 1996; 193: 41–49.

    CAS  PubMed  Google Scholar 

  101. Paster W et al. In vivo plasmid DNA electroporation generates exceptionally high levels of epitope-specific CD8+ T-cell responses. Gene Therapy 2003; 10: 717–724.

    CAS  PubMed  Google Scholar 

  102. Peretz Y, Zhou ZF, Halwani F, Prud'homme GJ . In vivo generation of dendritic cells by intramuscular codelivery of FLT3 ligand and GM-CSF plasmids. Mol Ther 2002; 6: 407–414.

    CAS  PubMed  Google Scholar 

  103. Selby M et al. Enhancement of DNA vaccine potency by electroporation in vivo. J Biotechnol 2000; 83: 147–152.

    CAS  PubMed  Google Scholar 

  104. Tjelle TE et al. Monoclonal antibodies produced by muscle after plasmid injection and electroporation. Mol Ther 2004; 9: 328–336.

    CAS  PubMed  Google Scholar 

  105. Tollefsen S et al. DNA injection in combination with electroporation: a novel method for vaccination of farmed ruminants. Scand J Immunol 2003; 57: 229–238.

    CAS  PubMed  Google Scholar 

  106. Widera G et al. Increased DNA vaccine delivery and immunogenicity by electroporation in vivo. J Immunol 2000; 164: 4635–4640.

    CAS  PubMed  Google Scholar 

  107. Zucchelli S et al. Enhancing B- and T-cell immune response to a hepatitis C virus E2 DNA vaccine by intramuscular electrical gene transfer. J Virol 2000; 74: 11598–11607.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Yang L et al. Generation of monoclonal antibodies against Blo t3 using DNA immunization with in vivo electroporation. Clin Exp Allergy 2003; 33: 663–668.

    CAS  PubMed  Google Scholar 

  109. Wu CJ, Lee SC, Huang HW, Tao MH . In vivo electroporation of skeletal muscles increases the efficacy of Japanese encephalitis virus DNA vaccine. Vaccine 2004; 22: 1457–1464.

    CAS  PubMed  Google Scholar 

  110. Aurisicchio L et al. Tamarin alpha-interferon is active in mouse liver upon intramuscular gene delivery. J Gene Med 2001; 3: 394–402.

    CAS  PubMed  Google Scholar 

  111. Perez N et al. Regulatable systemic production of monoclonal antibodies by in vivo muscle electroporation. Genet Vaccines Ther 2004; 2: 2.

    PubMed  PubMed Central  Google Scholar 

  112. Deleuze V et al. LPS-induced bronchial hyperreactivity: interference by mIL-10 differs according to site of delivery. Am J Physiol Lung Cell Mol Physiol 2004; 286: L98–L105.

    CAS  PubMed  Google Scholar 

  113. Maruyama H et al. Long-term production of erythropoietin after electroporation-mediated transfer of plasmid DNA into the muscles of normal and uremic rats. Gene Therapy 2001; 8: 461–468.

    CAS  PubMed  Google Scholar 

  114. Maruyama H et al. Skin-targeted gene transfer using in vivo electroporation. Gene Therapy 2001; 8: 1808–1812.

    CAS  PubMed  Google Scholar 

  115. Nordstrom JL . The antiprogestin-dependent GeneSwitch system for regulated gene therapy. Steroids 2003; 68: 1085–1094.

    CAS  PubMed  Google Scholar 

  116. Ataka K et al. Effects of erythropoietin-gene electrotransfer in rats with adenine-induced renal failure. Am J Nephrol 2003; 23: 315–323.

    CAS  PubMed  Google Scholar 

  117. Kreiss P, Bettan M, Crouzet J, Scherman D . Erythropoietin secretion and physiological effect in mouse after intramuscular plasmid DNA electrotransfer. J Gene Med 1999; 1: 245–250.

    CAS  PubMed  Google Scholar 

  118. Rizzuto G et al. Gene electrotransfer results in a high-level transduction of rat skeletal muscle and corrects anemia of renal failure. Hum Gene Ther 2000; 11: 1891–1900.

    CAS  PubMed  Google Scholar 

  119. Terada Y et al. Efficient and ligand-dependent regulated erythropoietin production by naked DNA injection and in vivo electroporation. Am J Kidney Dis 2001; 38: S50–53.

    CAS  PubMed  Google Scholar 

  120. Rizzuto G et al. Efficient and regulated erythropoietin production by naked DNA injection and muscle electroporation. Proc Natl Acad Sci USA 1999; 96: 6417–6422.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Dalle B et al. Dimeric erythropoietin fusion protein with enhanced erythropoietic activity in vitro and in vivo. Blood 2001; 97: 3776–3782.

    CAS  PubMed  Google Scholar 

  122. Lamartina S et al. Stringent control of gene expression in vivo by using novel doxycycline-dependent trans-activators. Hum Gene Ther 2002; 13: 199–210.

    CAS  PubMed  Google Scholar 

  123. Horiki M et al. High-level expression of interleukin-4 following electroporation-mediated gene transfer accelerates Type 1 diabetes in NOD mice. J Autoimmun 2003; 20: 111–117.

    CAS  PubMed  Google Scholar 

  124. Martinenghi S et al. Human insulin production and amelioration of diabetes in mice by electrotransfer-enhanced plasmid DNA gene transfer to the skeletal muscle. Gene Therapy 2002; 9: 1429–1437.

    CAS  PubMed  Google Scholar 

  125. Prud'homme GJ, Chang Y, Li X . Immunoinhibitory DNA vaccine protects against autoimmune diabetes through cDNA encoding a selective CTLA-4 (CD152) ligand. Hum Gene Ther 2002; 13: 395–406.

    CAS  PubMed  Google Scholar 

  126. Yin D, Tang JG . Gene therapy for streptozotocin-induced diabetic mice by electroporational transfer of naked human insulin precursor DNA into skeletal muscle in vivo. FEBS Lett 2001; 495: 16–20.

    CAS  PubMed  Google Scholar 

  127. Wang LY, Sun W, Chen MZ, Wang X . Intramuscular injection of naked plasmid DNA encoding human preproinsulin gene in streptozotocin-diabetes mice results in a significant reduction of blood glucose level. Sheng Li Xue Bao 2003; 55: 641–647.

    CAS  PubMed  Google Scholar 

  128. Rabinovsky ED, Draghia-Akli R . Insulin-like growth factor I plasmid therapy promotes in vivo angiogenesis. Mol Ther 2004; 9: 46–55.

    CAS  PubMed  Google Scholar 

  129. Pradat PF et al. Partial prevention of cisplatin-induced neuropathy by electroporation-mediated nonviral gene transfer. Hum Gene Ther 2001; 12: 367–375.

    CAS  PubMed  Google Scholar 

  130. Zang WP et al. Transfer and expression of recombinant human thrombopoietin gene in COS-7 Cells and mice in vivo. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2001; 9: 14–17.

    PubMed  Google Scholar 

  131. Zang WP, Wei XD, Wang SW, Wang DB . Thrombopoietic effect of recombinant human thrombopoietin gene transferred to mice mediated by electric pulse on normal and experimental thrombocytopenia mice. Zhonghua Xue Ye Xue Za Zhi 2001; 22: 128–131.

    CAS  PubMed  Google Scholar 

  132. Payen E et al. Improvement of mouse beta-thalassemia by electrotransfer of erythropoietin cDNA. Exp Hematol 2001; 29: 295–300.

    CAS  PubMed  Google Scholar 

  133. Samakoglu S et al. betaMinor-globin messenger RNA accumulation in reticulocytes governs improved erythropoiesis in beta thalassemic mice after erythropoietin complementary DNA electrotransfer in muscles. Blood 2001; 97: 2213–2220.

    CAS  PubMed  Google Scholar 

  134. Fewell JG et al. Gene therapy for the treatment of hemophilia B using PINC-formulated plasmid delivered to muscle with electroporation. Mol Ther 2001; 3: 574–583.

    CAS  PubMed  Google Scholar 

  135. Tomanin R et al. Non-viral transfer approaches for the gene therapy of mucopolysaccharidosis type II (Hunter syndrome). Acta Paediatr Suppl 2002; 91: 100–104.

    CAS  PubMed  Google Scholar 

  136. Gollins H, McMahon J, Wells KE, Wells DJ . High-efficiency plasmid gene transfer into dystrophic muscle. Gene Therapy 2003; 10: 504–512.

    CAS  PubMed  Google Scholar 

  137. Vilquin JT et al. Electrotransfer of naked DNA in the skeletal muscles of animal models of muscular dystrophies. Gene Therapy 2001; 8: 1097–1107.

    CAS  PubMed  Google Scholar 

  138. Murakami T et al. Full-length dystrophin cDNA transfer into skeletal muscle of adult mdx mice by electroporation. Muscle Nerve 2003; 27: 237–241.

    CAS  PubMed  Google Scholar 

  139. Briguet A et al. Transcriptional activation of the utrophin promoter B by a constitutively active Ets-transcription factor. Neuromuscul Disord 2003; 13: 143–150.

    PubMed  Google Scholar 

  140. Ferrer A et al. Long-term expression of full-length human dystrophin in transgenic mdx mice expressing internally deleted human dystrophins. Gene Therapy 2004; 11: 884–893.

    CAS  PubMed  Google Scholar 

  141. Chuang IC et al. Intramuscular electroporation with the pro-opiomelanocortin gene in rat adjuvant arthritis. Arthritis Res Ther 2004; 6: R7–R14.

    CAS  PubMed  Google Scholar 

  142. Kim JM et al. Electro-gene therapy of collagen-induced arthritis by using an expression plasmid for the soluble p75 tumor necrosis factor receptor-Fc fusion protein. Gene Therapy 2003; 10: 1216–1224.

    CAS  PubMed  Google Scholar 

  143. Perez N et al. Tetracycline transcriptional silencer tightly controls transgene expression after in vivo intramuscular electrotransfer: application to interleukin 10 therapy in experimental arthritis. Hum Gene Ther 2002; 13: 2161–2172.

    CAS  PubMed  Google Scholar 

  144. Saidenberg-Kermanac’h N et al. Efficacy of interleukin-10 gene electrotransfer into skeletal muscle in mice with collagen-induced arthritis. J Gene Med 2003; 5: 164–171.

    PubMed  Google Scholar 

  145. Bloquel C, Fabre E, Bureau MF, Scherman D . Plasmid DNA electrotransfer for intracellular and secreted proteins expression: new methodological developments and applications. J Gene Med 2004; 6 (Suppl 1): S11–S23.

    CAS  PubMed  Google Scholar 

  146. Kishimoto KN, Watanabe Y, Nakamura H, Kokubun S . Ectopic bone formation by electroporatic transfer of bone morphogenetic protein-4 gene. Bone 2002; 31: 340–347.

    CAS  PubMed  Google Scholar 

  147. Magee TR et al. Gene therapy of erectile dysfunction in the rat with penile neuronal nitric oxide synthase. Biol Reprod 2002; 67: 1033–1041.

    PubMed  Google Scholar 

  148. Yasui A et al. Elevated gastrin secretion by in vivo gene electroporation in skeletal muscle. Int J Mol Med 2001; 8: 489–494.

    CAS  PubMed  Google Scholar 

  149. Tanaka T et al. In vivo gene transfer of hepatocyte growth factor to skeletal muscle prevents changes in rat kidneys after 5/6 nephrectomy. Am J Transplant 2002; 2: 828–836.

    CAS  PubMed  Google Scholar 

  150. Xue F et al. Attenuated acute liver injury in mice by naked hepatocyte growth factor gene transfer into skeletal muscle with electroporation. Gut 2002; 50: 558–562.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Riera M et al. Intramuscular SP1017-formulated DNA electrotransfer enhances transgene expression and distributes hHGF to different rat tissues. J Gene Med 2004; 6: 111–118.

    CAS  PubMed  Google Scholar 

  152. Takahashi T et al. IGF-I gene transfer by electroporation promotes regeneration in a muscle injury model. Gene Therapy 2003; 10: 612–620.

    CAS  PubMed  Google Scholar 

  153. Sakamoto T et al. Target gene transfer of tissue plasminogen activator to cornea by electric pulse inhibits intracameral fibrin formation and corneal cloudiness. Hum Gene Ther 1999; 10: 2551–2557.

    CAS  PubMed  Google Scholar 

  154. Yomogida K, Yagura Y, Nishimune Y . Electroporated transgene-rescued spermatogenesis in infertile mutant mice with a sertoli cell defect. Biol Reprod 2002; 67: 712–717.

    CAS  PubMed  Google Scholar 

  155. Ochiai H et al. Synthesis of human erythropoietin in vivo in the oviduct of laying hens by localized in vivo gene transfer using electroporation. Poult Sci 1998; 77: 299–302.

    CAS  PubMed  Google Scholar 

  156. Draghia-Akli R et al. High-efficiency growth hormone-releasing hormone plasmid vector administration into skeletal muscle mediated by electroporation in pigs. FASEB J 2003; 17: 526–528.

    CAS  PubMed  Google Scholar 

  157. Khan AS et al. Maternal GHRH plasmid administration changes pituitary cell lineage and improves progeny growth of pigs. Am J Physiol Endocrinol Metab 2003; 285: E224–E231.

    CAS  PubMed  Google Scholar 

  158. Draghia-Akli R et al. Effects of plasmid-mediated growth hormone releasing hormone supplementation in young, healthy Beagle dogs. J Anim Sci 2003; 81: 2301–2310.

    CAS  PubMed  Google Scholar 

  159. http://www.cliniporator.com.

Download references

Acknowledgements

We acknowledge the financial support of CNRS, IGR, AFM and the EU Commission through the projects Cliniporator (QLK3-1999-00484)159 and Esope (QLK3-2002-02003) coordinated by LMM. We also acknowledge all their colleagues for fruitful discussions and collaborative work. FA is the recipient of an ‘aide aux études’ from the AFM (Association Française contre les Myopathies).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

André, F., Mir, L. DNA electrotransfer: its principles and an updated review of its therapeutic applications. Gene Ther 11 (Suppl 1), S33–S42 (2004). https://doi.org/10.1038/sj.gt.3302367

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302367

Keywords

This article is cited by

Search

Quick links