Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Immune responses to gene therapy vectors: influence on vector function and effector mechanisms

Abstract

Circumventing the immune response to the vector is a major challenge with all vector types. Viral vectors are the most likely to induce an immune response, especially those, like adenovirus and AAV, which express immunogenic epitopes within the organism. The first immune response occurring after vector transfer emerges from the innate immune system, mainly consisting in a rapid (few hours) inflammatory cytokines and chemokines secretion around the administration site. This reaction is high with adenoviral vectors and almost null with AAV. It is noteworthy that plasmid DNA vectors, because of CpG stimulatory islets, also stimulate the innate immunity via the stimulation of TLR receptors on leukocytes. Specific immune response leading to antibodies production and T lymphocytes activation also occurs within a few days after vector introduction. Capsid antigens are mostly responsible for specific immunity toward adenoviruses, and are also involved in the response against AAV. In the former case only, however, viral gene-encoded proteins can also be immunogenic. The pre-existing humoral immunity coming from early infections with wild-type AAV or adenovirus can prevent efficient gene transfer with the corresponding vectors. In all cases, some parameters like route of administration, dose, or promoter type have been extensively described as critical factors influencing vector immunity. Strategies to fight against vector-induced immunity can come from the immunology field, since tolerance induction or immunosuppression are a possibility. Alterations to vector structure have also been extensively performed to circumvent the immune system and thus enhance gene transfer efficiency and safety.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schauber CA et al. Lentiviral vectors pseudotyped with baculovirus gp64 efficiently transduce mouse cells in vivo and show tropism restriction against hematopoietic cell types in vitro. Gene Therapy 2004; 11: 266–275.

    Article  CAS  PubMed  Google Scholar 

  2. Wakimoto H et al. Effects of innate immunity on herpes simplex virus and its ability to kill tumor cells. Gene Therapy 2003; 10: 983–990.

    Article  CAS  PubMed  Google Scholar 

  3. Worgall S et al. Innate immune mechanisms dominate elimination of adenoviral vectors following in vivo administration. Hum Gene Ther 1997; 8: 37–44.

    Article  CAS  PubMed  Google Scholar 

  4. Liu Y et al. Rapid induction of cytotoxic T-cell response against cervical cancer cells by human papillomavirus type 16 E6 antigen gene delivery into human dendritic cells by an adeno-associated virus vector. Cancer Gene Ther 2001; 8: 948–957.

    Article  CAS  PubMed  Google Scholar 

  5. Zsengeller Z et al. Internalization of adenovirus by alveolar macrophages initiates early proinflammatory signaling during acute respiratory tract infection. J Virol 2000; 74: 9655–9667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rafii S et al. Infection of endothelium with E1(−)E4(+), but not E1(−)E4(−), adenovirus gene transfer vectors enhances leukocyte adhesion and migration by modulation of ICAM-1, VCAM-1, CD34, and chemokine expression. Circ Res 2001; 88: 903–910.

    Article  CAS  PubMed  Google Scholar 

  7. Schnell MA et al. Activation of innate immunity in nonhuman primates following intraportal administration of adenoviral vectors. Mol Ther 2001; 3: 708–722.

    Article  CAS  PubMed  Google Scholar 

  8. Lehrman S . Virus treatment questioned after gene therapy death. Nature 1999; 401: 517–518.

    Article  CAS  PubMed  Google Scholar 

  9. Zaiss AK et al. Differential activation of innate immune responses by adenovirus and adeno-associated virus vectors. J Virol 2002; 76: 4580–4590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yasuda K et al. Plasmid DNA activates murine macrophages to induce inflammatory cytokines in a CpG motif-independent manner by complex formation with cationic liposomes. Biochem Biophys Res Commun 2002; 293: 344–348.

    Article  CAS  PubMed  Google Scholar 

  11. Yi AK, Krieg AM . Rapid induction of mitogen-activated protein kinases by immune stimulatory CpG DNA. J Immunol 1998; 161: 4493–4497.

    CAS  PubMed  Google Scholar 

  12. Roman M et al. Immunostimulatory DNA sequences function as T helper-1-promoting adjuvants. Nat Med 1997; 3: 849–854.

    Article  CAS  PubMed  Google Scholar 

  13. Krug A et al. Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12. Eur J Immunol 2001; 31: 3026–3037.

    Article  CAS  PubMed  Google Scholar 

  14. Reyes-Sandoval A, Ertl HC . CpG methylation of a plasmid vector results in extended transgene product expression by circumventing induction of immune responses. Mol Ther 2004; 9: 249–261.

    Article  CAS  PubMed  Google Scholar 

  15. Paster W et al. In vivo plasmid DNA electroporation generates exceptionally high levels of epitope-specific CD8+ T-cell responses. Gene Therapy 2003; 10: 717–724.

    Article  CAS  PubMed  Google Scholar 

  16. Coelho-Castelo AA et al. B-lymphocytes in bone marrow or lymph nodes can take up plasmid DNA after intramuscular delivery. Hum Gene Ther 2003; 14: 1279–1285.

    Article  CAS  PubMed  Google Scholar 

  17. Chirmule N et al. Role of E4 in eliciting CD4 T-cell and B-cell responses to adenovirus vectors delivered to murine and nonhuman primate lungs. J Virol 1998; 72: 6138–6145.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Molinier-Frenkel V et al. Immune response to recombinant adenovirus in humans: capsid components from viral input are targets for vector-specific cytotoxic T lymphocytes. J Virol 2000; 74: 7678–7682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kafri T et al. Cellular immune response to adenoviral vector infected cells does not require de novo viral gene expression: implications for gene therapy. Proc Natl Acad Sci USA 1998; 95: 11377–11382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhong L et al. Recombinant adenovirus is an efficient and non-perturbing genetic vector for human dendritic cells. Eur J Immunol 1999; 29: 964–972.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang Y et al. CD40 ligand-dependent activation of cytotoxic T lymphocytes by adeno-associated virus vectors in vivo: role of immature dendritic cells. J Virol 2000; 74: 8003–8010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chiriva-Internati M et al. Testing recombinant adeno-associated virus-gene loading of dendritic cells for generating potent cytotoxic T lymphocytes against a prototype self-antigen, multiple myeloma HM1.24. Blood 2003; 102: 3100–3107; Epub 2003 Jul 3110.

    Article  CAS  PubMed  Google Scholar 

  23. Xin KQ et al. Oral administration of recombinant adeno-associated virus elicits human immunodeficiency virus-specific immune responses. Hum Gene Ther 2002; 13: 1571–1581.

    Article  CAS  PubMed  Google Scholar 

  24. Sarukhan A et al. Successful interference with cellular immune responses to immunogenic proteins encoded by recombinant viral vectors. J Virol 2001; 75: 269–277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chirmule N et al. Immune responses to adenovirus and adeno-associated virus in humans. Gene Therapy 1999; 6: 1574–1583.

    Article  CAS  PubMed  Google Scholar 

  26. Smith TA et al. Transient immunosuppression permits successful repetitive intravenous administration of an adenovirus vector. Gene Therapy 1996; 3: 496–502.

    CAS  PubMed  Google Scholar 

  27. Cichon G et al. Complement activation by recombinant adenoviruses. Gene Therapy 2001; 8: 1794–1800.

    Article  CAS  PubMed  Google Scholar 

  28. Gahery-Segard H et al. Immune response to recombinant capsid proteins of adenovirus in humans: antifiber and anti-penton base antibodies have a synergistic effect on neutralizing activity. J Virol 1998; 72: 2388–2397.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. O'Riordan CR et al. PEGylation of adenovirus with retention of infectivity and protection from neutralizing antibody in vitro and in vivo. Hum Gene Ther 1999; 10: 1349–1358.

    Article  CAS  PubMed  Google Scholar 

  30. Erles K, Sebokova P, Schlehofer JR . Update on the prevalence of serum antibodies (IgG and IgM) to adeno-associated virus (AAV). J Med Virol 1999; 59: 406–411.

    Article  CAS  PubMed  Google Scholar 

  31. Moskalenko M et al. Epitope mapping of human anti-adeno-associated virus type 2 neutralizing antibodies: implications for gene therapy and virus structure. J Virol 2000; 74: 1761–1766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Halbert CL et al. Transduction by adeno-associated virus vectors in the rabbit airway: efficiency, persistence, and readministration. J Virol 1997; 71: 5932–5941.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Fisher KJ et al. Recombinant adeno-associated virus for muscle directed gene therapy. Nat Med 1997; 3: 306–312.

    Article  CAS  PubMed  Google Scholar 

  34. Beck SE et al. Repeated delivery of adeno-associated virus vectors to the rabbit airway. J Virol 1999; 73: 9446–9455.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Lo WD et al. Adeno-associated virus-mediated gene transfer to the brain: duration and modulation of expression. Hum Gene Ther 1999; 10: 201–213.

    Article  CAS  PubMed  Google Scholar 

  36. Mastakov MY et al. Immunological aspects of recombinant adeno-associated virus delivery to the mammalian brain. J Virol 2002; 76: 8446–8454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Anand V et al. A deviant immune response to viral proteins and transgene product is generated on subretinal administration of adenovirus and adeno-associated virus. Mol Ther 2002; 5: 125–132.

    Article  CAS  PubMed  Google Scholar 

  38. Cottard V et al. Immune response against gene therapy vectors: influence of synovial fluid on adeno-associated virus mediated gene transfer to chondrocytes. J Clin Immunol 2004; 24: 162–169.

    Article  CAS  PubMed  Google Scholar 

  39. Boyle MP et al. Effect of adeno-associated virus-specific immunoglobulin G in human amniotic fluid on gene transfer. Hum Gene Ther 2003; 14: 365–373.

    Article  CAS  PubMed  Google Scholar 

  40. Xiao W et al. Gene therapy vectors based on adeno-associated virus type 1. J Virol 1999; 73: 3994–4003.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hildinger M et al. Hybrid vectors based on adeno-associated virus serotypes 2 and 5 for muscle-directed gene transfer. J Virol 2001; 75: 6199–6203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Onodera M et al. Gene therapy for severe combined immunodeficiency caused by adenosine deaminase deficiency: improved retroviral vectors for clinical trials. Acta Haematol 1999; 101: 89–96.

    Article  CAS  PubMed  Google Scholar 

  43. Brockstedt DG et al. Induction of immunity to antigens expressed by recombinant adeno-associated virus depends on the route of administration. Clin Immunol 1999; 92: 67–75.

    Article  CAS  PubMed  Google Scholar 

  44. Sun JY et al. Immune responses to adeno-associated virus and its recombinant vectors. Gene Therapy 2003; 10: 964–976.

    Article  CAS  PubMed  Google Scholar 

  45. Harding TC et al. Intravenous administration of an AAV-2 vector for the expression of factor IX in mice and a dog model of hemophilia B. Gene Therapy 2004; 11: 204–213.

    Article  CAS  PubMed  Google Scholar 

  46. Mingozzi F et al. Induction of immune tolerance to coagulation factor IX antigen by in vivo hepatic gene transfer. J Clin Invest 2003; 111: 1347–1356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ge Y et al. Factors influencing the development of an anti-factor IX (FIX) immune response following administration of adeno-associated virus-FIX. Blood 2001; 97: 3733–3737.

    Article  CAS  PubMed  Google Scholar 

  48. Halbert CL et al. Successful readministration of adeno-associated virus vectors to the mouse lung requires transient immunosuppression during the initial exposure. J Virol 1998; 72: 9795–9805.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Manning WC et al. Transient immunosuppression allows transgene expression following readministration of adeno-associated viral vectors. Hum Gene Ther 1998; 9: 477–485.

    Article  CAS  PubMed  Google Scholar 

  50. Song XY et al. Plasmid DNA encoding transforming growth factor-beta1 suppresses chronic disease in a streptococcal cell wall-induced arthritis model. J Clin Invest 1998; 101: 2615–2621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang YC et al. Immunity to adeno-associated virus serotype 2 delivered transgenes imparted by genetic predisposition to autoimmunity. Gene Therapy 2004; 11: 233–240.

    Article  CAS  PubMed  Google Scholar 

  52. Ritter T et al. Stimulatory and inhibitory action of cytokines on the regulation of hCMV-IE promoter activity in human endothelial cells. Cytokine 2000; 12: 1163–1170.

    Article  CAS  PubMed  Google Scholar 

  53. Harms JS, Splitter GA . Interferon-gamma inhibits transgene expression driven by SV40 or CMV promoters but augments expression driven by the mammalian MHC I promoter. Hum Gene Ther 1995; 6: 1291–1297.

    Article  CAS  PubMed  Google Scholar 

  54. Rabinowitz JE et al. Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J Virol 2002; 76: 791–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sarkar R et al. Total correction of hemophilia A mice with canine FVIII using an AAV 8 serotype. Blood 2004; 103: 1253–1260; Epub 2003 Oct 1259.

    Article  CAS  PubMed  Google Scholar 

  56. Gao GP et al. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy.PG – 11854-9. Proc Natl Acad Sci USA 2002; 99: 11854–11859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Seshidhar Reddy P et al. Development of adenovirus serotype 35 as a gene transfer vector. Virology 2003; 311: 384–393.

    Article  CAS  PubMed  Google Scholar 

  58. Schwartz RH . T cell anergy. Annu Rev Immunol 2003; 21: 305–334.

    Article  CAS  PubMed  Google Scholar 

  59. Kay MA et al. Long-term hepatic adenovirus-mediated gene expression in mice following CTLA4Ig administration. Nat Genet 1995; 11: 191–197.

    Article  CAS  PubMed  Google Scholar 

  60. Yang Y et al. Transient subversion of CD40 ligand function diminishes immune responses to adenovirus vectors in mouse liver and lung tissues. J Virol 1996; 70: 6370–6377.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Banchereau J et al. Dendritic cells: controllers of the immune system and a new promise for immunotherapy. Ann NY Acad Sci 2003; 987: 180–187.

    Article  CAS  PubMed  Google Scholar 

  62. Moore KW et al. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 2001; 19: 683–765.

    Article  CAS  PubMed  Google Scholar 

  63. Abe M, Thomson AW . Influence of immunosuppressive drugs on dendritic cells. Transpl Immunol 2003; 11: 357–365.

    Article  CAS  PubMed  Google Scholar 

  64. Rea D et al. Glucocorticoids transform CD40-triggering of dendritic cells into an alternative activation pathway resulting in antigen-presenting cells that secrete IL-10. Blood 2000; 95: 3162–3167.

    CAS  PubMed  Google Scholar 

  65. Macian F et al. T-cell anergy. Curr Opin Immunol 2004; 16: 209–216.

    Article  CAS  PubMed  Google Scholar 

  66. Waddington SN et al. Reduced toxicity of F-deficient Sendai virus vector in the mouse fetus. Gene Therapy 2004; 11: 599–608.

    Article  CAS  PubMed  Google Scholar 

  67. Chen Y et al. Identification of methylated CpG motifs as inhibitors of the immune stimulatory CpG motifs. Gene Therapy 2001; 8: 1024–1032.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bessis, N., GarciaCozar, F. & Boissier, MC. Immune responses to gene therapy vectors: influence on vector function and effector mechanisms. Gene Ther 11 (Suppl 1), S10–S17 (2004). https://doi.org/10.1038/sj.gt.3302364

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302364

Keywords

This article is cited by

Search

Quick links