Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

siRNA therapeutics: big potential from small RNAs

Abstract

RNA interference (RNAi) is now an umbrella term referring to post-transcriptional gene silencing mediated by either degradation or translation arrest of target RNA. This process is initiated by double-stranded RNA with sequence homology driving specificity. The discovery that 21–23 nucleotide RNA duplexes (small-interfering RNAs, siRNAs) mediate RNAi in mammalian cells opened the door to the therapeutic use of siRNAs. While much work remains to optimize delivery and maintain specificity, the therapeutic advantages of siRNAs for treatment of viral infection, dominant disorders, cancer, and neurological disorders show great promise.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Bernstein E, Denli AM, Hannon GJ . The rest is silence. RNA 2001; 7: 1509–1521.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Fire A et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391: 806–811.

    Article  CAS  PubMed  Google Scholar 

  3. Bartel D . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281–297.

    CAS  PubMed  Google Scholar 

  4. Doench J, Petersen C, Sharp P . siRNAs can function as miRNAs. Genes Dev 2003; 17: 438–442.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Elbashir S, Lendeckel W, Tuschl T . RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 2001; 15: 188–200.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hammond SM, Bernstein E, Beach D, Hannon GJ . An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 2000; 404: 293–296.

    Article  CAS  PubMed  Google Scholar 

  7. Bernstein E, Caudy A, Hammond S, Hannon G . Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001; 409: 363–366.

    CAS  PubMed  Google Scholar 

  8. Ketting RF et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 2001; 15: 2654–2659.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Knight SW, Bass BL . A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science 2001; 293: 2269–2271.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Zamore P, Tuschl T, Sharp P, Bartel D . RNAi: double-stranded RNA directs the ATP-dependent dleavage of mRNA at 21 to 23 nucleotide intervals. Cell 2000; 101: 25–33.

    CAS  PubMed  Google Scholar 

  11. Schwarz DS et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 2003; 115: 199–208.

    CAS  PubMed  Google Scholar 

  12. Martinez J et al. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 2002; 110: 563–574.

    CAS  PubMed  Google Scholar 

  13. Stark G et al. How cells respond to interferons. Annu Rev Biochem 1998; 67: 227–264.

    CAS  PubMed  Google Scholar 

  14. Elbashir S et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001; 411: 494–498.

    CAS  PubMed  Google Scholar 

  15. Sledz CA et al. Activation of the interferon system by short-interfering RNAs. Nat Cell Bio 2003; 5: 834–839.

    CAS  Google Scholar 

  16. Bridge A et al. Induction of an interferon response by RNAi vectors in mammalian cells. Nat Genet 2003; 34: 263–264.

    CAS  PubMed  Google Scholar 

  17. Miller V et al. Allele-specific silencing of dominant disease genes. Proc Natl Acad Sci USA 2003; 100: 7195–7200.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gonzalez-Alegre P, Miller V, Davidson B, Paulson H . Toward therapy for DYT1 dystonia: allele-specific silencing of mutant TorsinA. Ann Neurol 2003; 53: 781–787.

    Article  CAS  PubMed  Google Scholar 

  19. Faustino N, Cooper T . Pre-mRNA splicing and human disease. Genes Dev 2003; 17: 419–437.

    CAS  PubMed  Google Scholar 

  20. Lewis DL et al. Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. Nat Genet 2002; 32: 107–108.

    CAS  PubMed  Google Scholar 

  21. Celotto A, Graveley B . Exon-specific RNAi: a tool for dissecting the functional relevance of alternative splicing. RNA 2002; 8: 718–724.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Cho J et al. Two isoforms of sarco/endoplasmic reticulum calcium ATPase (SERCA) are essential in Caenorhabditis elegans. Gene 2000; 261: 211–219.

    CAS  PubMed  Google Scholar 

  23. Ge B et al. TAB1B (transforming growth factor-B-activated protein kinase 1-binding protein 1B), a novel splicing variant of TAB1 that interacts with p38α but not TAK1*. J Biol Chem 2003; 278: 2286–2293.

    CAS  PubMed  Google Scholar 

  24. Ryther RCC et al. GH1 splicing is regulated by multiple enhancers whose mutation produces a dominant-negative GH isoform that can be degraded by allele-specific siRNA. Endocrinology 2004; 145: 2988–2996.

    CAS  PubMed  Google Scholar 

  25. Kao S-C, Krichevsky A, Kosik K, Tsai L-H . BACE1 suppression by RNA interference in primary cortical neurons. J Biol Chem 2003; 279: 1942–1949.

    PubMed  Google Scholar 

  26. Wood M, Trulzsch B, Abdelgany A, Beeson D . Therapeutic gene silencing in the nervous system. Hum Mol Gen 2003; 12: R279–284.

    CAS  PubMed  Google Scholar 

  27. Zhang G, Budker V, Wolff J . High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Hum Gene Therapy 1999; 10: 1735–1737.

    CAS  Google Scholar 

  28. Song E et al. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med 2003; 9: 347–351.

    CAS  PubMed  Google Scholar 

  29. Zender L et al. Caspase 8 small interfering RNA prevents acute liver failure in mice. Proc Natl Acad Sci USA 2003; 100: 7797–7802.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wilda M, Fuchs U, Wossmann W, Borkhardt A . Killing of leukemic cells with a BCR/ABL fusion gene by RNA interference (RNAi). Oncogene 2002; 21: 5716–5724.

    CAS  PubMed  Google Scholar 

  31. Brummelkamp T, Bernards R, Agami R . Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2002; 2: 243–247.

    CAS  PubMed  Google Scholar 

  32. Cioca D, Aoki Y, Kiyosawa K . RNA interference is a functional pathway with therapeutic potential in human myeloid leukemia cell lines. Cancer Gene Ther 2003; 10: 125–133.

    CAS  PubMed  Google Scholar 

  33. Jackson A et al. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 2003; 21: 635–637.

    CAS  PubMed  Google Scholar 

  34. Semizarov D et al. Specificity of short interfering RNA determined through gene expression signatures. Proc Natl Acad Sci USA 2003; 100: 6347–6352.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Stevenson M . Dissecting HIV-1 through RNA interference. Nat Rev Immun 2003; 3: 851–857.

    CAS  Google Scholar 

  36. Kitabwalla M, Ruprecht R . RNA interference – a new weapon against HIV and beyond. N Engl J Med 2002; 347: 1364–1367.

    CAS  PubMed  Google Scholar 

  37. Silva J, Hammond S, Hannon G . RNA interference: a promising approach to antiviral therapy? TRENDS Mol Med 2002; 8: 505–508.

    CAS  PubMed  Google Scholar 

  38. Gitlin L, Andino R . Nucleic acid-based immune system: the antiviral potential of mammalian RNA silencing. J Virol 2003; 77: 7159–7165.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Boden D et al. Human immunodeficiency virus type 1 escape from RNA interference. J Virol 2003; 77: 11531–11535.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Das A et al. Human immunodeficiency virus type 1 escapes from RNA interference-mediated inhibition. J Virol 2004; 78: 2601–2605.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Gitlin L, Karelsky S, Andino R . Short interfering RNA confers intracellular antiviral immunity in human cells. Nature 2002; 418: 430–434.

    CAS  PubMed  Google Scholar 

  42. Lakatos L, Szittya G, Silhavy D, Burgyan J . Molecular mechanism of RNA silencing suppression mediated by p19 protein of tombusviruses. EMBO J 2004; 23: 876–884.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Czauderna F et al. Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acid Res 2003; 31: 2705–2716.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Chiu Y-L, Rana T . siRNA function in RNAi: a chemical modification analysis. RNA 2003; 9: 1034–1048.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Amarzguioui M, Holen T, Babaie E, Prydz H . Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acid Res 2003; 31: 589–595.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. McCaffrey AP et al. RNA interference in adult mice. Nature 2002; 418: 38–39.

    CAS  PubMed  Google Scholar 

  47. Sorensen DR, Leirdal M, Sioud M . Gene silencing by systemic delivery of synthetic siRNAs in adult mice. J Mol Biol 2003; 327: 761–766.

    CAS  PubMed  Google Scholar 

  48. Calegari F et al. Tissue-specific RNA interference in postimplantation mouse embryos with endoribonuclease-prepared short interfering RNA. Proc Natl Acad Sci USA 2002; 99: 14236–14240.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Matsuda T, Cepko C . Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc Natl Acad Sci USA 2004; 101: 16–22.

    CAS  PubMed  Google Scholar 

  50. Chou T, Biswas S, Lu S . Gene delivery using physical methods: an overview. Methods Mol Biol 2004; 245: 147–166.

    CAS  PubMed  Google Scholar 

  51. Trezise A, Palazon L, Davies W, Colledge W . In vivo gene expression: DNA electrotransfer. Curr Opin Mol Ther 2003; 5: 397–404.

    CAS  PubMed  Google Scholar 

  52. Zhang X et al. Small interfering RNA targeting heme oxygenase-1 enhances ischemia–reperfusion-induced lung apoptosis. J Biol Chem 2004; 279: 10677–10684.

    CAS  PubMed  Google Scholar 

  53. Iascson R, Kull B, Salmi P, Wahlestedt C . Lack of efficacy of ‘naked’ small interfering RNA applied directly to rat brain. Acta Physiol Scand 2003; 179: 173–177.

    Google Scholar 

  54. Jacque J-M, Triques K, Stevenson M . Modulation of HIV-1 replication by RNA interference. Nature 2002; 418: 435–438.

    CAS  PubMed  Google Scholar 

  55. Lee NS et al. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol 2002; 19: 500–505.

    Google Scholar 

  56. Coburn GA, Cullen BR . Potent and specific inhibition of human immunodeficiency virus type 1 replication by RNA interference. J Virol 2002; 76: 9225–9231.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Capodici J, Kariko K, Weissman D . Inhibition of HIV-1 infection by small interfering RNA-mediated RNA interference. J Immunol 2002; 169: 5196–5201.

    PubMed  Google Scholar 

  58. Qin X-F, An DS, Chen ISY, Baltimore D . Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc Natl Acad Sci USA 2003; 100: 183–188.

    CAS  PubMed  Google Scholar 

  59. Novina C et al. siRNA-directed inhibition of HIV-1 infection. Nat Med 2002; 8: 681–686.

    CAS  PubMed  Google Scholar 

  60. Song E et al. Sustained small interfering RNA-mediated human immunodeficiency virus type I inhibition in primary macrophages. J Virol 2003; 77: 7174–7181.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Arteaga H et al. Choosing CCR5 or Rev siRNA in HIV-1. Nat Biotechnol 2003; 21: 230–231.

    CAS  PubMed  Google Scholar 

  62. Martinez M et al. Suppression of chemokine receptor expression by RNA interference allows for inhibition of HIV-1 replication. AIDS 2002; 16: 2385–2390.

    CAS  PubMed  Google Scholar 

  63. Hu W-Y et al. Inhibition of retroviral pathogenesis by RNA interference. Curr Biol 2002; 12: 1301–1311.

    CAS  PubMed  Google Scholar 

  64. Park W-S, Hayafune M, Miyano-Kurosaki N, Takaku H . Specific HIV-1 env gene silencing by small interfering RNAs in human peripheral blood mononuclear cells. Gene Therapy 2003; 10: 2046–2050.

    CAS  PubMed  Google Scholar 

  65. Boden D et al. Promoter choice affects the potency of HIV-1 specific RNA interference. Nucleic Acid Res 2003; 31: 5033–5038.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Hamasaki K et al. Short interfering RNA-directed inhibition of hepatitis B virus replication. FEBS 2003; 543: 51–54.

    CAS  Google Scholar 

  67. McCaffrey A et al. Inhibition of hepatitis B virus in mice by RNA interference. Nat Biotechnol 2003; 21: 639–644.

    CAS  PubMed  Google Scholar 

  68. Wilson J et al. RNA interference blocks gene expression and RNA synthesis from hepatitis C replicons propagated in human liver cells. Proc Natl Acad Sci USA 2003; 100: 2783–2788.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Randall G, Grakoui A, Rice C . Clearance of replicating hepatitis C virus replicon RNAs in cell culture by small interfering RNAs. Proc Natl Acad Sci USA 2003; 100: 235–240.

    CAS  PubMed  Google Scholar 

  70. Yokota T et al. Inhibition of intracellular hepatitis C virus replication by synthetic and vector-derived small interfering RNAs. EMBO Reports 2003; 4: 602–608.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kapadia S, Brideau-Andersen A, Chisari F . Interference of hepatitis C virus RNA replication by short interfering RNAs. Proc Natl Acad Sci USA 2003; 100: 2014–2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Sen A et al. Inhibition of hepatitis C virus protein expression by RNA interference. Virus Res 2003; 96: 27–35.

    CAS  PubMed  Google Scholar 

  73. Bitko V, Barik S . Phenotypic silencing of cytoplasmic genes using sequence-specific double-stranded short interfering RNA and its application in the reverse genetics of wild type negative-strand RNA viruses. BMC Microbiol 2001; 1: 34.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Ge Q et al. RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proc Natl Acad Sci USA 2003; 100: 2718–2723.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Dector M, Romero P, Lopez S, Arias C . Rotavirus gene silencing by small interfering RNAs. EMBO Reports 2002; 3: 1175–1180.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Gaggar A, Shayakhmetov D, Lieber A . CD46 is a cellular receptor for group B adenoviruses. Nat Med 2003; 9: 1408–1412.

    CAS  PubMed  Google Scholar 

  77. Jia Q, Sun R . Inhibition of gammaherpesvirus replication by RNA interference. J Virol 2003; 77: 3301–3306.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Jiang M, Milner J . Selective silencing of viral gene expression in HPV-positive human cervical carcinoma cells treated with siRNA, a primer of RNA interference. Oncogene 2002; 21: 6041–6048.

    CAS  PubMed  Google Scholar 

  79. Bhoumik A et al. An ATF2-derived peptide sensitizes melanomas to apoptosis and inhibits their growth and metastasis. J Clin Invest 2002; 110: 643–650.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Hingorani S et al. Suppression of BRAFV599E in human melanoma abrogates transformation. Cancer Res 2003; 63: 5198–5202.

    CAS  PubMed  Google Scholar 

  81. Yang G, Thompson J, Fang B, Liu J . Silencing of H-ras gene expression by retrovirus-mediated siRNA decreases transformation efficiency and tumor growth in a model of human ovarian cancer. Oncogene 2003; 22: 5694–5701.

    CAS  PubMed  Google Scholar 

  82. Zhang L et al. Vector-based RNAi, a novel tol for isoform-specific knock-down of VEGF and anti-angiogenesis gene therapy of cancer. Biochem Biophys Res Commun 2003; 303: 1169–1178.

    CAS  PubMed  Google Scholar 

  83. Denkert C et al. Induction of GO/G1 cell cycle arrest in ovarian carcinoma cells by the anti-inflammatory drug NS-398, but not by COX-2-specific RNA interference. Oncogene 2003; 22: 8653–8661.

    CAS  PubMed  Google Scholar 

  84. Czauderna F et al. Inducible shRNA expression for application in a prostate cancer mouse model. Nucleic Acids Res 2003; 31: e127.

    PubMed  PubMed Central  Google Scholar 

  85. Davies J et al. Development of an siRNA-based method for repressing specific genes in renal organ culture and its use to show that the Wt1 tumour suppressor is required for nephron differentiation. Hum Mol Genet 2004; 13: 235–246.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (DK035592 and GM62487). RCCR was supported by NIH 5T32 GM0347.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryther, R., Flynt, A., Phillips, J. et al. siRNA therapeutics: big potential from small RNAs. Gene Ther 12, 5–11 (2005). https://doi.org/10.1038/sj.gt.3302356

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302356

Keywords

This article is cited by

Search

Quick links