Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Vaccination with helper-dependent adenovirus enhances the generation of transgene-specific CTL

Abstract

Recombinant adenoviral vectors (AdV) have been used experimentally as vaccines to present antigenic transgenes in vivo. However, administration of first-generation vectors (FG-AdV) is often limited by their induction of antiviral immunity. To address this limitation, helper-dependent vectors (HD-AdV) were developed that lack viral coding regions. While the administration of HD-AdV results in long-term gene expression in vivo, their utility as immunogens has never been examined. Direct vaccination with 108 blue-forming units (BFU) of HD-AdV injected into C57BL/6 mice lead to superior transgene-specific CTL and antibody responses when compared to the same amount of a FG-AdV. The antibody responses to viral antigens were high in response to both the vectors. As a mechanism to reduce viral exposure, dendritic cells (DC) were transduced with HD-AdV in vitro and then used as a cell-based vaccine. DC transduced with HD-AdV expressed higher levels of transgene-specific mRNA and up to 1200-fold higher levels of transgene protein than did DC transduced with a FG-AdV. In addition, HD-AdV-transduced DC stimulated superior transgene-specific CTL responses when administered in vivo, an effect that was further enhanced by maturing the DC with LPS prior to administration. In contrast to direct immunization with HD-AdV, vaccination with HD-AdV-transduced DC was associated with limited antibody responses against the AdV. We conclude that HD-AdV stimulates superior transgene-specific immune responses when compared to a FG-AdV, and that immunization with a DC-based vaccine maintains this efficacy while limiting antiviral reactivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Russell WC . Update on adenovirus and its vectors. J Gen Virol 2000; 81: 2573–2604.

    Article  CAS  PubMed  Google Scholar 

  2. Yang Y et al. Inactivation of E2a in recombinant adenoviruses improves the prospect for gene therapy in cystic fibrosis. Nat Genet 1994; 7: 362–369.

    Article  CAS  PubMed  Google Scholar 

  3. Gilbert R et al. Improved performance of a fully gutted adenovirus vector containing two full-length dystrophin cDNAs regulated by a strong promoter. Mol Ther 2002; 6: 501–509.

    Article  CAS  PubMed  Google Scholar 

  4. Fisher KJ et al. Recombinant adenovirus deleted of all viral genes for gene therapy of cystic fibrosis. Virology 1996; 217: 11–22.

    Article  CAS  PubMed  Google Scholar 

  5. Kochanek S et al. A new adenoviral vector: replacement of all viral coding sequences with 28 kb of DNA independently expressing both full-length dystrophin and beta-galactosidase. Proc Natl Acad Sci USA 1996; 93: 5731–5736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Parks RJ et al. A helper-dependent adenovirus vector system: removal of helper virus by Cre-mediated excision of the viral packaging signal. Proc Natl Acad Sci USA 1996; 93: 13565–13570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Roth MD et al. Helper-dependent adenoviral vectors efficiently express transgenes in human dendritic cells but still stimulate antiviral immune responses. J Immunol 2002; 169: 4651–4656.

    Article  CAS  PubMed  Google Scholar 

  8. Maione D et al. Prolonged expression and effective readministration of erythropoietin delivered with a fully deleted adenoviral vector. Hum Gene Ther 2000; 11: 859–868.

    Article  CAS  PubMed  Google Scholar 

  9. Maione D et al. An improved helper-dependent adenoviral vector allows persistent gene expression after intramuscular delivery and overcomes preexisting immunity to adenovirus. Proc Natl Acad Sci USA 2001; 98: 5986–5991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mosmann TR, Sad S . The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today 1996; 17: 138–146.

    Article  CAS  PubMed  Google Scholar 

  11. Melief CJ et al. Effective therapeutic anticancer vaccines based on precision guiding of cytolytic T lymphocytes. Immunol Rev 2002; 188: 177–182.

    Article  CAS  PubMed  Google Scholar 

  12. Ribas A et al. Genetic immunization for the melanoma antigen MART-1/Melan-A using recombinant adenovirus-transduced murine dendritic cells. Cancer Res 1997; 57: 2865–2869.

    CAS  PubMed  Google Scholar 

  13. Arthur JF et al. A comparison of gene transfer methods in human dendritic cells. Cancer Gene Ther 1997; 4: 17–25.

    CAS  PubMed  Google Scholar 

  14. Molinier-Frenkel V et al. Adenovirus hexon protein is a potent adjuvant for activation of a cellular immune response. J Virol 2002; 76: 127–135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Miller G et al. Adenovirus infection enhances dendritic cell immunostimulatory properties and induces natural killer and T-cell-mediated tumor protection. Cancer Res 2002; 62: 5260–5266.

    CAS  PubMed  Google Scholar 

  16. Basak S et al. Colorectal cancer vaccines: antiidiotypic antibody, recombinant protein, and viral vector. Ann NY Acad Sci 2000; 910: 237–252; discussion 252–253.

    Article  CAS  PubMed  Google Scholar 

  17. Steitz J et al. Genetic immunization of mice with human tyrosinase-related protein 2: implications for the immunotherapy of melanoma. Int J Cancer 2000; 86: 89–94.

    Article  CAS  PubMed  Google Scholar 

  18. Schmitz H, Wigand R, Heinrich W . Worldwide epidemiology of human adenovirus infections. Am J Epidemiol 1983; 117: 455–466.

    Article  CAS  PubMed  Google Scholar 

  19. DeMatteo RP et al. Cellular immunity delimits adenoviral gene therapy strategies for the treatment of neoplastic diseases. Ann Surg Oncol 1999; 6: 88–94.

    Article  CAS  PubMed  Google Scholar 

  20. Siemens DR et al. Cutting edge: restoration of the ability to generate CTL in mice immune to adenovirus by delivery of virus in a collagen-based matrix. J Immunol 2001; 166: 731–735.

    Article  CAS  PubMed  Google Scholar 

  21. Yang Y et al. Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses. J Virol 1995; 69: 2004–2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Morsy MA et al. An adenoviral vector deleted for all viral coding sequences results in enhanced safety and extended expression of a leptin transgene. Proc Natl Acad Sci USA 1998; 95: 7866–7871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zou L et al. Helper-dependent adenoviral vector-mediated gene transfer in aged rat brain. Hum Gene Ther 2001; 12: 181–191.

    Article  CAS  PubMed  Google Scholar 

  24. Parks RJ et al. Effects of stuffer DNA on transgene expression from helper-dependent adenovirus vectors. J Virol 1999; 73: 8027–8034.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. O'Neal WK et al. Toxicity associated with repeated administration of first-generation adenovirus vectors does not occur with a helper-dependent vector. Mol Med 2000; 6: 179–195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mercier S et al. Distinct roles of adenovirus vector-transduced dendritic cells, myoblasts, and endothelial cells in mediating an immune response against a transgene product. J Virol 2002; 76: 2899–2911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bronte V et al. Antigen expression by dendritic cells correlates with the therapeutic effectiveness of a model recombinant poxvirus tumor vaccine. Proc Natl Acad Sci USA 1997; 94: 3183–3188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Condon C et al. DNA-based immunization by in vivo transfection of dendritic cells. Nat Med 1996; 2: 1122–1128.

    Article  CAS  PubMed  Google Scholar 

  29. Porgador A et al. Predominant role for directly transfected dendritic cells in antigen presentation to CD8+ T cells after gene gun immunization. J Exp Med 1998; 188: 1075–1082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Song W et al. Dendritic cells genetically modified with an adenovirus vector encoding the cDNA for a model antigen induce protective and therapeutic antitumor immunity. J Exp Med 1997; 186: 1247–1256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wan Y et al. Dendritic cells transduced with an adenoviral vector encoding a model tumor-associated antigen for tumor vaccination. Hum Gene Ther 1997; 8: 1355–1363.

    Article  CAS  PubMed  Google Scholar 

  32. Wan Y et al. Murine dendritic cells transduced with an adenoviral vector expressing a defined tumor antigen can overcome anti-adenovirus neutralizing immunity and induce effective tumor regression. Int J Oncol 1999; 14: 771–776.

    CAS  PubMed  Google Scholar 

  33. Nikitina EY et al. An effective immunization and cancer treatment with activated dendritic cells transduced with full-length wild-type p53. Gene Therapy 2002; 9: 345–352.

    Article  CAS  PubMed  Google Scholar 

  34. Castiglioni P et al. Cross-priming is under control of the relB gene. Scand J Immunol 2002; 56: 219–223.

    Article  CAS  PubMed  Google Scholar 

  35. Mincheff M et al. In vivo transfection and/or cross-priming of dendritic cells following DNA and adenoviral immunizations for immunotherapy of cancer – changes in peripheral mononuclear subsets and intracellular IL-4 and IFN-gamma lymphokine profile. Crit Rev Oncol Hematol 2001; 39: 125–132.

    Article  CAS  PubMed  Google Scholar 

  36. Labeur MS et al. Generation of tumor immunity by bone marrow-derived dendritic cells correlates with dendritic cell maturation stage. J Immunol 1999; 162: 168–175.

    CAS  PubMed  Google Scholar 

  37. Aiba S, Tagami H . Dendritic cell activation induced by various stimuli, eg exposure to microorganisms, their products, cytokines, and simple chemicals as well as adhesion to extracellular matrix. J Dermatol Sci 1998; 20: 1–13.

    Article  CAS  PubMed  Google Scholar 

  38. Manome H, Aiba S, Tagami H . Simple chemicals can induce maturation and apoptosis of dendritic cells. Immunology 1999; 98: 481–490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rescigno M et al. Dendritic cell maturation is required for initiation of the immune response. J Leukoc Biol 1997; 61: 415–421.

    Article  CAS  PubMed  Google Scholar 

  40. Verhasselt V et al. Bacterial lipopolysaccharide stimulates the production of cytokines and the expression of costimulatory molecules by human peripheral blood dendritic cells: evidence for a soluble CD14-dependent pathway. J Immunol 1997; 158: 2919–2925.

    CAS  PubMed  Google Scholar 

  41. Morelli AE et al. Cytokine production by mouse myeloid dendritic cells in relation to differentiation and terminal maturation induced by lipopolysaccharide or CD40 ligation. Blood 2001; 98: 1512–1523.

    Article  CAS  PubMed  Google Scholar 

  42. Cella M et al. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T–T help via APC activation. J Exp Med 1996; 184: 747–752.

    Article  CAS  PubMed  Google Scholar 

  43. Fu YX, Chaplin DD . Development and maturation of secondary lymphoid tissues. Annu Rev Immunol 1999; 17: 399–433.

    Article  CAS  PubMed  Google Scholar 

  44. Hirschowitz EA et al. Murine dendritic cells infected with adenovirus vectors show signs of activation. Gene Therapy 2000; 7: 1112–1120.

    Article  CAS  PubMed  Google Scholar 

  45. Korst RJ et al. Effect of adenovirus gene transfer vectors on the immunologic functions of mouse dendritic cells. Mol Ther 2002; 5: 307–315.

    Article  CAS  PubMed  Google Scholar 

  46. Rea D et al. Adenoviruses activate human dendritic cells without polarization toward a T-helper type 1-inducing subset. J Virol 1999; 73: 10245–10253.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Rescigno M et al. Dendritic cell survival and maturation are regulated by different signaling pathways. J Exp Med 1998; 188: 2175–2180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Berberich I, Shu GL, Clark EA . Cross-linking CD40 on B cells rapidly activates nuclear factor-kappa B. J Immunol 1994; 153: 4357–4366.

    CAS  PubMed  Google Scholar 

  49. Okada N et al. Efficient gene delivery into dendritic cells by fiber-mutant adenovirus vectors. Biochem Biophys Res Commun 2001; 282: 173–179.

    Article  CAS  PubMed  Google Scholar 

  50. Rea D et al. Highly efficient transduction of human monocyte-derived dendritic cells with subgroup B fiber-modified adenovirus vectors enhances transgene-encoded antigen presentation to cytotoxic T cells. J Immunol 2001; 166: 5236–5244.

    Article  CAS  PubMed  Google Scholar 

  51. Tillman BW et al. Adenoviral vectors targeted to CD40 enhance the efficacy of dendritic cell-based vaccination against human papillomavirus 16-induced tumor cells in a murine model. Cancer Res 2000; 60: 5456–5463.

    CAS  PubMed  Google Scholar 

  52. Grave L et al. Differential influence of the E4 adenoviral genes on viral and cellular promoters. J Gene Med 2000; 2: 433–443.

    Article  CAS  PubMed  Google Scholar 

  53. Gilbert R et al. Dystrophin expression in muscle following gene transfer with a fully deleted (‘gutted’) adenovirus is markedly improved by trans-acting adenoviral gene products. Hum Gene Ther 2001; 12: 1741–1755.

    Article  CAS  PubMed  Google Scholar 

  54. Basak SK et al. Increased dendritic cell number and function following continuous in vivo infusion of granulocyte macrophage-colony-stimulating factor and interleukin-4. Blood 2002; 99: 2869–2879.

    Article  CAS  PubMed  Google Scholar 

  55. Sato M et al. Replication and packaging of helper-dependent adenoviral vectors. Gene Therapy 2002; 9: 472–476.

    Article  CAS  PubMed  Google Scholar 

  56. Harui A et al. Frequency and stability of chromosomal integration of adenovirus vectors. J Virol 1999; 73: 6141–6146.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Inaba K et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 1992; 176: 1693–1702.

    Article  CAS  PubMed  Google Scholar 

  58. Ribas A et al. CD40 cross-linking bypasses the absolute requirement for CD4 T cells during immunization with melanoma antigen gene-modified dendritic cells. Cancer Res 2001; 61: 8787–8793.

    CAS  PubMed  Google Scholar 

  59. Michou AI et al. Adenovirus-mediated gene transfer: influence of transgene, mouse strain and type of immune response on persistence of transgene expression. Gene Therapy 1997; 4: 473–482.

    Article  CAS  PubMed  Google Scholar 

  60. Croyle MA et al. Stealth adenoviruses blunt cell-mediated and humoral immune responses against the virus and allow for significant gene expression upon readministration in the lung. J Virol 2001; 75: 4792–4801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Supported by grants from the Tobacco-Related Disease Research Program of California (SKB, 10KT-0086; MDR, #7RT-0040); the American Lung Association of California (SKB); the UCLA Gene Therapy Program (SMK); and the UCLA Lung Cancer SPORE (NIH/NCI 1 P50 CA090388).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harui, A., Roth, M., Kiertscher, S. et al. Vaccination with helper-dependent adenovirus enhances the generation of transgene-specific CTL. Gene Ther 11, 1617–1626 (2004). https://doi.org/10.1038/sj.gt.3302332

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302332

Keywords

This article is cited by

Search

Quick links