Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Antiangiogenic gene therapy: disruption of neovascular networks mediated by inducible caspase-9 delivered with a transcriptionally targeted adenoviral vector

Abstract

The activation of an inducible caspase (iCaspase-9) mediates apoptosis of neovascular endothelial cells, and overcomes the prosurvival effect of vascular endothelial growth factor or basic fibroblast growth factor. The potential utilization of direct activation of caspases as an antiangiogenic strategy for treatment of angiogenesis-dependent diseases (eg cancer) requires expression of the inducible caspase primarily in the tumor endothelium. The objective of this work was to develop and characterize a transcriptionally targeted adenoviral vector that mediates expression of iCaspase-9 specifically in neovascular endothelial cells. We observed that adenoviral vectors containing the human VEGFR2 promoter induced reporter gene expression primarily in proliferating human dermal microvascular endothelial cells (HDMEC). HDMEC transduced with recombinant adenoviral vectors containing iCaspase-9 under regulation of the VEGFR2 promoter (Ad-hVEGFR2-iCaspase-9) and exposed to a cell-permeable dimerizer drug (AP20187), presented higher caspase-3 activity and apoptosis than controls (P0.05). Using the SCID Mouse Model of Human Angiogenesis, we observed that local delivery of Ad-hVEGFR2-iCaspase-9 followed by intraperitoneal injection of AP20187 resulted in endothelial cell apoptosis and local ablation of microvessels. We believe that this constitutes the first report of a transcriptionally targeted antiangiogenic adenoviral vector that mediates neovascular disruption upon activation of a caspase-based artificial death switch.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Folkman J . Tumor angiogenesis: therapeutic implications. N Engl J Med 1971; 285: 1182–1186.

    Article  CAS  PubMed  Google Scholar 

  2. Bouck N, Stellmach V, Hsu SC . How tumors become angiogenic. Adv Cancer Res 1996; 69: 135–174.

    Article  CAS  PubMed  Google Scholar 

  3. Hanahan D, Folkman J . Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996; 86: 353–364.

    Article  CAS  PubMed  Google Scholar 

  4. Folkman J . Angiogenesis and angiogenesis inhibition: an overview. EXS 1997; 79: 1–8.

    CAS  PubMed  Google Scholar 

  5. Gerber HP et al. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem 1998; 273: 30336–30343.

    Article  CAS  PubMed  Google Scholar 

  6. Nör JE, Polverini PJ . Role of endothelial cell survival and death signals in angiogenesis. Angiogenesis 1999a; 3: 101–116.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nör JE et al. Up-regulation of Bcl-2 in microvascular endothelial cells enhances intratumoral angiogenesis and accelerates tumor growth. Cancer Res 2001a; 61: 2183–2188.

    PubMed  Google Scholar 

  8. Araki S, Simada Y, Kaji K, Hayashi H . Role of protein kinase C in the inhibition by fibroblast growth factor of apoptosis in serum-depleted endothelial cells. Biochem Biophys Res Commun 1990; 172: 1081–1085.

    Article  CAS  PubMed  Google Scholar 

  9. Nör JE et al. Ablation of microvessels in vivo upon dimerization of iCaspase-9. Gene Therapy 2002; 9: 444–451.

    Article  PubMed  Google Scholar 

  10. Ali M, Lemoine NR, Ring CJ . The use of DNA viruses as vectors for gene therapy. Gene Therapy 1994; 1: 367–384.

    CAS  PubMed  Google Scholar 

  11. St George JA . Gene therapy progress and prospects: adenoviral vectors. Gene Therapy 2003; 10: 1135–1141.

    Article  CAS  PubMed  Google Scholar 

  12. Latham JP, Searle PF, Mautner V, James ND . Prostate-specific antigen promoter/enhancer driven gene therapy for prostate cancer: construction and testing of a tissue-specific adenovirus vector. Cancer Res 2000; 60: 334–341.

    CAS  PubMed  Google Scholar 

  13. Xie X et al. Adenovirus-mediated tissue-targeted expression of a caspase-9-based artificial death switch for the treatment of prostate cancer. Cancer Res 2001; 61: 6795–6804.

    CAS  PubMed  Google Scholar 

  14. Wickham TJ . Targeting adenovirus. Gene Therapy 2000; 7: 110–114.

    Article  CAS  PubMed  Google Scholar 

  15. Spencer DM, Wandless TJ, Schreiber SL, Crabtree GR . Controlling signal transduction with synthetic ligands. Science 1993; 262: 1019–1024.

    Article  CAS  PubMed  Google Scholar 

  16. Singhal S, Kaiser LR . Cancer chemotherapy using suicide genes. Surg Oncol Clin N Am 1998; 7: 505–536.

    Article  CAS  PubMed  Google Scholar 

  17. Fan L et al. Improved artificial death switches based on caspases and FADD. Hum Gene Ther 1999; 10: 2273–2285.

    Article  CAS  PubMed  Google Scholar 

  18. Patterson C et al. Cloning and functional analysis of the promoter for KDR/flk-1, a receptor for vascular endothelial growth factor. J Biol Chem 1995; 270: 23111–23118.

    Article  CAS  PubMed  Google Scholar 

  19. Millauer B et al. Dominant-negative inhibition of Flk-1 suppresses the growth of many tumor types in vivo. Cancer Res 1996; 56: 1615–1620.

    CAS  PubMed  Google Scholar 

  20. Heidenreich R, Kappel A, Breier G . Tumor endothelium-specific transgene expression directed by vascular endothelial growth factor receptor-2 (Flk-1) promoter/enhancer sequences. Cancer Res 2000; 60: 6142–6147.

    CAS  PubMed  Google Scholar 

  21. Jaggar RT, Chan HY, Harris AL, Bicknell R . Endothelial cell-specific expression of tumor necrosis factor-alpha from the KDR or E-selectin promoters following retroviral delivery. Hum Gene Ther 1997; 8: 2239–2247.

    Article  CAS  PubMed  Google Scholar 

  22. Modlich U, Pugh CW, Bicknell R . Increasing endothelial cell specific expression by the use of heterologous hypoxic and cytokine-inducible enhancers. Gene Therapy 2000; 7: 896–902.

    Article  CAS  PubMed  Google Scholar 

  23. MacCorkle RA, Freeman KW, Spencer DM . Synthetic activation of caspases: artificial death switches. Proc Natl Acad Sci USA 1998; 95: 3655–3660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shariat SF et al. Adenovirus-mediated transfer of inducible caspases: a novel ‘death switch’ gene therapeutic approach to prostate cancer. Cancer Res 2001; 61: 2562–2571.

    CAS  PubMed  Google Scholar 

  25. Quinn TP et al. Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium. Proc Natl Acad Sci USA 1993; 90: 7533–7537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nör JE et al. Engineering and characterization of functional human microvessels in immunodeficient mice. Lab Invest 2001b; 81: 453–463.

    Article  PubMed  Google Scholar 

  27. Clackson T . Redesigning small molecule-protein interfaces. Curr Opin Struct Biol 1998; 8: 451–458.

    Article  CAS  PubMed  Google Scholar 

  28. Folkman J . Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995; 1: 27–31.

    Article  CAS  PubMed  Google Scholar 

  29. Folkman J . Fighting cancer by attacking its blood supply. Sci Am 1996; 275: 150–154.

    Article  CAS  PubMed  Google Scholar 

  30. Plate KH et al. Up-regulation of vascular endothelial growth factor and its cognate receptors in a rat glioma model of tumor angiogenesis. Cancer Res 1993; 53: 5822–5827.

    CAS  PubMed  Google Scholar 

  31. Korhonen J et al. Endothelial-specific gene expression directed by the tie gene promoter in vivo. Blood 1995; 86: 1828–1835.

    CAS  PubMed  Google Scholar 

  32. Schlaeger TM et al. Uniform vascular-endothelial-cell-specific gene expression in both embryonic and adult transgenic mice. Proc Natl Acad Sci USA 1997; 94: 3058–3063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dejana E, Bazzoni G, Lampugnani MG . Vascular endothelial (VE)-cadherin: only an intercellular glue? Exp Cell Res 1999; 252: 13–19.

    Article  CAS  PubMed  Google Scholar 

  34. Kappel A et al. Identification of vascular endothelial growth factor (VEGF) receptor-2 (Flk-1) promoter/enhancer sequences sufficient for angioblast and endothelial cell-specific transcription in transgenic mice. Blood 1999; 93: 4284–4292.

    CAS  PubMed  Google Scholar 

  35. Nör JE, Christensen J, Mooney DJ, Polverini PJ . Vascular endothelial growth factor (VEGF)-mediated angiogenesis is associated with enhanced endothelial cell survival and induction of Bcl-2 expression. Am J Pathol 1999b; 154: 375–384.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ruben Hernandez-Alcoceba for help in designing the adenovirus vectors; Michael Clarke for helpful discussions and for critical review of this manuscript; Victor Rivera for critical review of this manuscript; and John Westman and Chris Strayhorn for help with the histology. We also thank ARIAD Pharmaceuticals (www.ariad.com/regulationkits) for the dimerizing agent AP20187. This research was supported in part by Grant DE14601 from NIH, and grant from the American Dental Association Health Foundation (JEN); Grants CA70057 (GN) and CA77266 (DMS) from the NIH; and by Grant 2 P30 CA46592-14 from NIH to the University of Michigan Comprehensive Cancer Center.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, W., Sun, Q., Dong, Z. et al. Antiangiogenic gene therapy: disruption of neovascular networks mediated by inducible caspase-9 delivered with a transcriptionally targeted adenoviral vector. Gene Ther 12, 320–329 (2005). https://doi.org/10.1038/sj.gt.3302306

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302306

Keywords

This article is cited by

Search

Quick links