Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Identification of multiple genetic loci that regulate adenovirus gene therapy

Abstract

A key aspect of the immune response to adenovirus (Ad) gene therapy is the generation of a cytotoxic T-cell (CTL) response. To better understand the genetic network underlying these events, 20 strains of C57BL/6 × DBA/2 (BXD) recombinant inbred (RI) mice were administered with AdLacZ and analyzed at days 7, 21, 30, and 50 for liver β-galactosidase (LacZ) expression and CTL response. Sera levels of interferon gamma (IFN-γ), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) were analyzed at different times after AdLacZ. There was a distinct strain-dependent expression of LacZ, which was strongly correlated with the CTL response. Among the five BXD RI strains that exhibited significantly prolonged LacZ expression, four also exhibited a marked defect in the production of Ad-specific CTL. There was a strong correlation between the sera levels of IFN-γ, TNF-α, and IL-6, but cytokine responses were not significantly correlated with LacZ expression or the CTL response. Quantitative trait loci regulating LacZ on day 30 were found on chromosome (Chr) 19 (33 cM) and Chr 15 (42.8 cM). Cytotoxicity mapped to Chr 7 (41.0 and 57.4–65.2 cM), Chr 15 (61.7 cM), and Chr X (27.8 cM). IFN-γ production mapped to Chr 18 (22, 27, and 32 cM) and Chr 11 (64.0 cM). TNF-α and IL-6 production mapped to Chr 6 (91.5 cM) Chr 9 (42.0 cM) and Chr 8 (52 and 73.0 cM). These results indicate that different strains of mice exhibit different pathways for effective clearance of AdLacZ depending on genetic polymorphisms and interactions at multiple genetic loci.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Liu Q, Muruve DA . Molecular basis of the inflammatory response to adenovirus vectors. Gene Therapy 2003; 10: 935–940.

    Article  CAS  PubMed  Google Scholar 

  2. Chirmule N et al. Immune responses to adenovirus and adeno-associated virus in humans. Gene Therapy 1999; 6: 1574–1583.

    Article  CAS  PubMed  Google Scholar 

  3. Michou AI et al. Adenovirus-mediated gene transfer: influence of transgene, mouse strain and type of immune response on persistence of transgene expression. Gene Therapy 1997; 4: 473–482.

    Article  CAS  PubMed  Google Scholar 

  4. St George JA . Gene therapy progress and prospects: adenoviral vectors. Gene Therapy 2003; 10: 1135–1141.

    Article  CAS  PubMed  Google Scholar 

  5. Wickham TJ . Targeting adenovirus. Gene Therapy 2000; 7: 110–114.

    Article  CAS  PubMed  Google Scholar 

  6. Parks R, Evelegh C, Graham F . Use of helper-dependent adenoviral vectors of alternative serotypes permits repeat vector administration. Gene Therapy 1999; 6: 1565–1573.

    Article  CAS  PubMed  Google Scholar 

  7. Roth MD et al. Helper-dependent adenoviral vectors efficiently express transgenes in human dendritic cells but still stimulate antiviral immune responses. J Immunol 2002; 169: 4651–4656.

    Article  CAS  PubMed  Google Scholar 

  8. Yang Y, Li Q, Ertl HC, Wilson JM . Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses. J Virol 1995; 69: 2004–2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang Y, Wilson JM . Clearance of adenovirus-infected hepatocytes by MHC class I-restricted CD4+ CTLs in vivo. J Immunol 1995; 155: 2564–2570.

    CAS  PubMed  Google Scholar 

  10. Kim M, Kim K . Diversity and complexity of CD8+ T cell responses against a single epitope of adenovirus E1B. Virology 2002; 295: 238–249.

    Article  CAS  PubMed  Google Scholar 

  11. Cichon G, Strauss M . Transient immunosuppression with 15-deoxyspergualin prolongs reporter gene expression and reduces humoral immune response after adenoviral gene transfer. Gene Therapy 1998; 5: 85–90.

    Article  CAS  PubMed  Google Scholar 

  12. Ye X et al. Transient depletion of CD4 lymphocyte improves efficacy of repeated administration of recombinant adenovirus in the ornithine transcarbamylase deficient sparse fur mouse. Gene Therapy 2000; 7: 1761–1767.

    Article  CAS  PubMed  Google Scholar 

  13. Minter RM et al. TNF-alpha receptor signaling and IL-10 gene therapy regulate the innate and humoral immune responses to recombinant adenovirus in the lung. J Immunol 2000; 164: 443–451.

    Article  CAS  PubMed  Google Scholar 

  14. Shean MK et al. Immunomodulation and adenoviral gene transfer to the lungs of nonhuman primates. Hum Gene Therapy 2000; 11: 1047–1055.

    Article  CAS  Google Scholar 

  15. Zhang HG et al. Inhibition of tumor necrosis factor alpha decreases inflammation and prolongs adenovirus gene expression in lung and liver. Hum Gene Ther 1998; 9: 1875–1884.

    Article  CAS  PubMed  Google Scholar 

  16. Yang Y, Wilson JM . CD40 ligand-dependent T cell activation: requirement of B7-CD28 signaling through CD40. Science 1996; 273: 1862–1864.

    Article  CAS  PubMed  Google Scholar 

  17. Schowalter DB et al. Constitutive expression of murine CTLA4Ig from a recombinant adenovirus vector results in prolonged transgene expression. Gene Therapy 1997; 4: 853–860.

    Article  CAS  PubMed  Google Scholar 

  18. Scaria A et al. Antibody to CD40 ligand inhibits both humoral and cellular immune responses to adenoviral vectors and facilitates repeated administration to mouse airway. Gene Therapy 1997; 4: 611–617.

    Article  CAS  PubMed  Google Scholar 

  19. Guerette B et al. Prevention of immune reactions triggered by first-generation adenoviral vectors by monoclonal antibodies and CTLA4Ig. Hum Gene Ther 1996; 7: 1455–1463.

    Article  CAS  PubMed  Google Scholar 

  20. Ziller C, Stoeckel F, Boon L, Haegel-Kronenberger H . Transient blocking of both B7.1 (CD80) and B7.2 (CD86) in addition to CD40–CD40L interaction fully abrogates the immune response following systemic injection of adenovirus vector. Gene Therapy 2002; 9: 537–546.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang HG et al. Induction of specific T-cell tolerance by adenovirus-transfected, Fas ligand-producing antigen presenting cells. Nat Biotechnol 1998; 16: 1045–1049.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang HG et al. Hepatic DR5 induces apoptosis and limits adenovirus gene therapy product expression in the liver. J Virol 2002; 76: 5692–5700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hsu HC et al. Age-related change in thymic T-cell development is associated with genetic loci on mouse chromosomes 1, 3, and 11. Mech Ageing Dev 2002; 123: 1145–1158.

    Article  CAS  PubMed  Google Scholar 

  24. Hsu H-C et al. Age-related thymic involution in C57BL/6J × DBA/2J recombinant inbred mice maps to mouse chromosomes 9 and 10. Genes Immun 2003, (in press).

  25. Schirrmacher V, Landolfo S, Zawatzky R, Kirchner H . Immunogenetic studies on the resistance of mice to highly metastatic DBA/2 tumor cell variants. II. Influence of minor histocompatibility antigens on tumor resistance, gamma-interferon induction and cytotoxic response. Invasion Metastasis 1981; 1: 175–194.

    CAS  PubMed  Google Scholar 

  26. Grizzle WE et al. BXD recombinant inbred mice represent a novel T cell-mediated immune response tumor model. Int J Cancer 2002; 101: 270–279.

    Article  CAS  PubMed  Google Scholar 

  27. Libert C et al. Identification of a locus on distal mouse chromosome 12 that controls resistance to tumor necrosis factor-induced lethal shock. Genomics 1999; 55: 284–289.

    Article  CAS  PubMed  Google Scholar 

  28. Lee SH et al. Susceptibility to mouse cytomegalovirus is associated with deletion of an activating natural killer cell receptor of the C-type lectin superfamily. Nat Genet 2001; 28: 42–45.

    CAS  PubMed  Google Scholar 

  29. Scalzo AA et al. The effect of the Cmv-1 resistance gene, which is linked to the natural killer cell gene complex, is mediated by natural killer cells. J Immunol 1992; 149: 581–589.

    CAS  PubMed  Google Scholar 

  30. Vassalli G . Gene therapy of heart transplantation. Rev Med Suisse Romande 2002; 122: 145–148.

    PubMed  Google Scholar 

  31. Acsadi G et al. Interferons impair early transgene expression by adenovirus-mediated gene transfer in muscle cells. J Mol Med 1998; 76: 442–450.

    Article  CAS  PubMed  Google Scholar 

  32. Manly KF, Olson JM . Overview of QTL mapping software and introduction to map manager QT. Mamm Genome 1999; 10: 327–334.

    Article  CAS  PubMed  Google Scholar 

  33. Manly KF, Cudmore Jr RH, Meer JM . Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome 2001; 12: 930–932.

    Article  CAS  PubMed  Google Scholar 

  34. Chesler EJ et al. Genetic correlates of gene expression in recombinant inbred strains: a relational model to explore for neurobehavioral phenotypes. Neuroinformatics 2003, (in press).

  35. Wang J, Williams RW, Chesler EJ, Manly KF . WebQTL: web-based complex trait analysis. Neuroinformatics 2003, (in press).

  36. Benihoud K, Yeh P, Perricaudet M . Adenovirus vectors for gene delivery. Curr Opin Biotechnol 1999; 10: 440–447.

    Article  CAS  PubMed  Google Scholar 

  37. Burgert HG et al. Subversion of host defense mechanisms by adenoviruses. Curr Top Microbiol Immunol 2002; 269: 273–318.

    CAS  PubMed  Google Scholar 

  38. Peng Y, Falck-Pedersen E, Elkon KB . Variation in adenovirus transgene expression between BALB/c and C57BL/6 mice is associated with differences in interleukin-12 and gamma interferon production and NK cell activation. J Virol 2001; 75: 4540–4550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Doerschug K et al. First-generation adenovirus vectors shorten survival time in a murine model of sepsis. J Immunol 2002; 169: 6539–6545.

    Article  CAS  PubMed  Google Scholar 

  40. Wheeler MD et al. Adenoviral gene delivery can inactivate Kupffer cells: role of oxidants in NF-kappaB activation and cytokine production. J Leukoc Biol 2001; 69: 622–630.

    CAS  PubMed  Google Scholar 

  41. Matsuki Y et al. Soluble Fas gene therapy protects against Fas-mediated apoptosis of hepatocytes but not the lethal effects of Fas-induced TNF-alpha production by Kupffer cells. Cell Death Differ 2002; 9: 626–635.

    Article  CAS  PubMed  Google Scholar 

  42. Qin L et al. Promoter attenuation in gene therapy: interferon-gamma and tumor necrosis factor-alpha inhibit transgene expression. Hum Gene Ther 1997; 8: 2019–2029.

    Article  CAS  PubMed  Google Scholar 

  43. Smith HR et al. Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc Natl Acad Sci USA 2002; 99: 8826–8831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Blake JA, Richardson JE, Davisson MT, Eppig JT . The Mouse Genome Database (MGD). A comprehensive public resource of genetic, phenotypic and genomic data. The Mouse Genome Informatics Group. Nucleic Acids Res 1997; 25: 85–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Blake JA et al. MGD: the Mouse Genome Database. Nucleic Acids Res 2003; 31: 193–195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Havelkova H et al. T-cell proliferative response is controlled by loci Tria4 and Tria5 on mouse chromosomes 7 and 9. Mamm Genome 1999; 10: 670–674.

    Article  CAS  PubMed  Google Scholar 

  47. Panoutsakopoulou V et al. Differences in the immune response during the acute phase of E-55+ murine leukemia virus infection in progressor BALB and long term nonprogressor C57BL mice. J Immunol 1998; 161: 17–26.

    CAS  PubMed  Google Scholar 

  48. Otto JM et al. Identification of multiple loci linked to inflammation and autoantibody production by a genome scan of a murine model of rheumatoid arthritis. Arthritis Rheum 1999; 42: 2524–2531.

    Article  CAS  PubMed  Google Scholar 

  49. Butterfield RJ et al. New genetic loci that control susceptibility and symptoms of experimental allergic encephalomyelitis in inbred mice. J Immunol 1998; 161: 1860–1867.

    CAS  PubMed  Google Scholar 

  50. Silveira PA et al. Identification of the Gasa3 and Gasa4 autoimmune gastritis susceptibility genes using congenic mice and partitioned, segregative and interaction analyses. Immunogenetics 2001; 53: 741–750.

    Article  CAS  PubMed  Google Scholar 

  51. McIndoe RA et al. Localization of non-Mhc collagen-induced arthritis susceptibility loci in DBA/1j mice. Proc Natl Acad Sci USA 1999; 96: 2210–2214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Daser A et al. Genetics of atopy in a mouse model: polymorphism of the IL-5 receptor alpha chain. Immunogenetics 2000; 51: 632–638.

    Article  CAS  PubMed  Google Scholar 

  53. Bachy M, Bonnin-Rivalland A, Tilliet V, Trannoy E . Beta galactosidase release as an alternative to chromium release in cytotoxic T-cell assays. J Immunol Methods 1999; 230: 37–46.

    Article  CAS  PubMed  Google Scholar 

  54. Ichikawa K et al. TRAIL-R2 (DR5) mediates apoptosis of synovial fibroblasts in rheumatoid arthritis. J Immunol 2003; 171: 1061–1069.

    Article  CAS  PubMed  Google Scholar 

  55. Williams RW, Gu J, Qi S, Lu L . The genetic structure of recombinant inbred mice: high-resolution consensus maps for complex trait analysis. Genome Biol 2001; 2:RESEARCH0046.

    Article  Google Scholar 

  56. Williams RW, Gu J, Qi S, Lu L . Release 1 of the BXN Genotype Database: the genetic structure of recombinant inbred mice: high-resolution consensus maps for complex trait analysis. 〈nervenet.org/papers/bxn.html〉 2001.

  57. Taylor BA et al. Genotyping new B × Drecombinant inbred mouse strains and comparison of B × Dand consensus maps. Mamm Genome 1999; 10: 335–348.

    Article  CAS  PubMed  Google Scholar 

  58. Laird PW et al. Simplified mammalian DNA isolation procedure. Nucleic Acids Res 1991; 19: 4293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dietrich W et al. A genetic map of the mouse suitable for typing intraspecific crosses. Genetics 1992; 131: 423–447.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Dietrich WF et al. A genetic map of the mouse with 4,006 simple sequence length polymorphisms. Nat Genet 1994; 7: 220–245.

    Article  CAS  PubMed  Google Scholar 

  61. Lander E, Kruglyak L . Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 1995; 11: 241–247.

    Article  CAS  PubMed  Google Scholar 

  62. Churchill GA, Doerge RW . Empirical threshold values for quantitative trait mapping. Genetics 1994; 138: 963–971.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Lynch M, Walsh B . Genetics and Analysis of Quantitative Traits. Sinauer: Sunderland, MA, 1998.

    Google Scholar 

  64. Belknap JK et al. Type I and type II error rates for quantitative trait loci (QTL) mapping studies using recombinant inbred mouse strains. Behav Genet 1996; 26: 149–160.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ms Carol Humber for excellent secretarial work. This work was supported by NIH Grants R01 AG 16653, N01 AR 6-2224, RO1 AI 42900, and CA 20408, and a Birmingham VAMC Merit Review Grant. Huang-Ge Zhang is a recipient of Arthritis Foundation Investigator Award.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, HG., Hsu, HC., Yang, PA. et al. Identification of multiple genetic loci that regulate adenovirus gene therapy. Gene Ther 11, 4–14 (2004). https://doi.org/10.1038/sj.gt.3302136

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302136

Keywords

This article is cited by

Search

Quick links