Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Gene- and cell-based therapeutics for type I diabetes mellitus

Abstract

Type 1 diabetes mellitus, an autoimmune disorder is an attractive candidate for gene and cell-based therapy. From the use of gene-engineered immune cells to induce hyporesponsiveness to autoantigens to islet and beta cell surrogate transplants expressing immunoregulatory genes to provide a local pocket of immune privilege, these strategies have demonstrated proof of concept to the point where translational studies can be initiated. Nonetheless, along with the proof of concept, a number of important issues have been raised by the choice of vector and expression system as well as the point of intervention; prophylactic or therapeutic. An assessment of the current state of the science and potential leads to the conclusion that some strategies are ready for safety trials while others require varying degrees of technical and conceptual refinement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Atkinson MA, Leiter EH . The NOD mouse model of type 1 diabetes: as good as it gets? Nat Med 1999; 5: 601–604.

    CAS  PubMed  Google Scholar 

  2. Pietropaolo M et al. Progression to insulin-requiring diabetes in seronegative prediabetic subjects: the role of two HLA-DQ high-risk haplotypes. Diabetologia 2002; 45: 66–76.

    CAS  PubMed  Google Scholar 

  3. Pietropaolo M, Trucco M . Major histocompatibility locus and other genes that determine risk of development of insulin-dependent Diabetes mellitus. In: LeRoith D, Taylor S, Olefsky JM (eds.), Diabetes Mellitus: A fundamental and Clinical Text. J.B. Lippincott & Co.; Philadelphia, PA, 2000, pp. 399–410.

    Google Scholar 

  4. Vafiadis P et al. Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat Genet 1997; 15: 289–292.

    CAS  PubMed  Google Scholar 

  5. Pugliese A et al. The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nat Genet 1997; 15: 293–297.

    CAS  PubMed  Google Scholar 

  6. Chentoufi AA, Polychronakos C . Insulin expression levels in the thymus modulate insulin-specific autoreactive T-cell tolerance: the mechanism by which the IDDM2 locus may predispose to diabetes. Diabetes 2002; 51: 1383–1390.

    CAS  PubMed  Google Scholar 

  7. Mein CA et al. A search for type 1 diabetes susceptibility genes in families from the United Kingdom. Nat Genet 1998; 19: 297–300.

    CAS  PubMed  Google Scholar 

  8. Concannon P et al. A second-generation screen of the human genome for susceptibility to insulin-dependent diabetes mellitus. Nat Genet 1998; 19: 292–296.

    CAS  PubMed  Google Scholar 

  9. Davies JL et al. A genome-wide search for human type 1 diabetes susceptibility genes. Nature 1994; 371: 130–136.

    CAS  PubMed  Google Scholar 

  10. Oldstone MB . Molecular mimicry and immune-mediated diseases. Faseb J 1998; 12: 1255–1265.

    CAS  PubMed  Google Scholar 

  11. von Herrath MG, Holz A, Homann D, Oldstone MB . Role of viruses in type I diabetes. Semin Immunol 1998; 10: 87–100.

    CAS  PubMed  Google Scholar 

  12. Horwitz MS et al. Diabetes induced by Coxsackie virus: initiation by bystander damage and not molecular mimicry. Nat Med 1998; 4: 781–785.

    CAS  PubMed  Google Scholar 

  13. Karges W et al. Immunological aspects of nutritional diabetes prevention in NOD mice: a pilot study for the cow's milk-based IDDM prevention trial. Diabetes 1997; 46: 557–564.

    CAS  PubMed  Google Scholar 

  14. Kaufman DL et al. Autoimmunity to two forms of glutamate decarboxylase in insulin-dependent diabetes mellitus. J Clin Invest 1992; 89: 283–292.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Conrad B, Trucco M . Superantigens as etiopathogenetic factors in the development of insulin-dependent diabetes mellitus. Diabetes Metab Rev 1994; 10: 309–338.

    CAS  PubMed  Google Scholar 

  16. Conrad B et al. Evidence for superantigen involvement in insulin-dependent diabetes mellitus aetiology. Nature 1994; 371: 351–355.

    CAS  PubMed  Google Scholar 

  17. Acerini CL et al. Coeliac disease in children and adolescents with IDDM: clinical characteristics and response to gluten-free diet. Diabet Med 1998; 15: 38–44.

    CAS  PubMed  Google Scholar 

  18. Virtanen SM et al. Diet, cow's milk protein antibodies and the risk of IDDM in Finnish children. Childhood Diabetes in Finland Study Group. Diabetologia 1994; 37: 381–387.

    CAS  PubMed  Google Scholar 

  19. Kostraba JN et al. Early infant diet and risk of IDDM in blacks and whites. A matched case–control study. Diabetes Care 1992; 15: 626–631.

    CAS  PubMed  Google Scholar 

  20. Mandrup-Poulsen T et al. Involvement of interleukin 1 and interleukin 1 antagonist in pancreatic β-cell destruction in insulin-dependent diabetes mellitus. Cytokine 1993; 5: 185–191.

    CAS  PubMed  Google Scholar 

  21. McDaniel ML et al. Cytokines and nitric oxide in islet infla-mmation and diabetes. Proc Soc Exp Biol Med 1996; 211: 24–32.

    CAS  PubMed  Google Scholar 

  22. Arnush M et al. IL-1 produced and released endogenously within human islets inhibits β-cell function. J Clin Invest 1998; 102: 516–526.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Arnush M et al. Potential role of resident islet macrophage activation in the initiation of autoimmune diabetes. J Immunol 1998; 160: 2684–2691.

    CAS  PubMed  Google Scholar 

  24. Lacy PE . The intraislet macrophage and type I diabetes. Mt Sinai J Med 1994; 61: 170–174.

    CAS  PubMed  Google Scholar 

  25. O'Brien BA, Fieldus WE, Field CJ, Finegood DT . Clearance of apoptotic β-cells is reduced in neonatal autoimmune diabetes-prone rats. Cell Death Differ 2002; 9: 457–464.

    CAS  PubMed  Google Scholar 

  26. Trudeau JD et al. Neonatal β-cell apoptosis: a trigger for autoimmune diabetes? Diabetes 2000; 49: 1–7.

    CAS  PubMed  Google Scholar 

  27. Scaglia L, Cahill CJ, Finegood DT, Bonner-Weir S . Apoptosis participates in the remodeling of the endocrine pancreas in the neonatal rat. Endocrinology 1997; 138: 1736–1741.

    CAS  PubMed  Google Scholar 

  28. Giannoukakis N, Rudert WA, Robbins PD, Trucco M . Targeting autoimmune diabetes with gene therapy. Diabetes 1999; 48: 2107–2121.

    CAS  PubMed  Google Scholar 

  29. Giannoukakis N, Thomson A, Robbins P . Gene therapy in transplantation. Gene Therapy 1999; 6: 1499–1511.

    CAS  PubMed  Google Scholar 

  30. Bottino R, Trucco M, Balamurugan AN, Starzl TE . Pancreas and islet cell transplantation. Best Pract Res Clin Gastroenterol 2002; 16: 457–474.

    PubMed  PubMed Central  Google Scholar 

  31. Sui G et al. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci USA 2002; 99: 5515–5520.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kogure K et al. Targeted integration of foreign DNA into a defined locus on chromosome 19 in K562 cells using AAV-derived components. Int J Hematol 2001; 73, 469–475.

    CAS  PubMed  Google Scholar 

  33. Pieroni L et al. Targeted integration of adeno-associated virus-derived plasmids in transfected human cells. Virology 1998; 249: 249–259.

    CAS  PubMed  Google Scholar 

  34. Ikeda Y et al. Gene transduction efficiency in cells of different species by HIV and EIAV vectors. Gene Therapy 2002; 9: 932–938.

    CAS  PubMed  Google Scholar 

  35. O'Rourke JP et al. Comparison of gene transfer efficiencies and gene expression levels achieved with equine infectious anemia virus-and human immunodeficiency virus type 1-derived lentivirus vectors. J Virol 2002; 76: 1510–1515.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Olsen JC . Gene transfer vectors derived from equine infectious anemia virus. Gene Therapy 1998; 5: 1481–1487.

    CAS  PubMed  Google Scholar 

  37. Lotery AJ et al. Gene transfer to the nonhuman primate retina with recombinant feline immunodeficiency virus vectors. Hum Gene Ther 2002; 13: 689–696.

    CAS  PubMed  Google Scholar 

  38. Kelly PF et al. Highly efficient gene transfer into cord blood nonobese diabetic/severe combined immunodeficiency repopulating cells by oncoretroviral vector particles pseudotyped with the feline endogenous retrovirus (RD114) envelope protein. Blood 2000; 96: 1206–1214.

    CAS  PubMed  Google Scholar 

  39. Curran MA, Kaiser SM, Achacoso PL, Nolan GP . Efficient transduction of nondividing cells by optimized feline immunodeficiency virus vectors. Mol Ther 2000; 1: 31–38.

    CAS  PubMed  Google Scholar 

  40. Poeschla EM, Wong-Staal F, Looney DJ . Efficient transduction of nondividing human cells by feline immunodeficiency virus lentiviral vectors. Nat Med 1998; 4: 354–357.

    CAS  PubMed  Google Scholar 

  41. Britt LD, Scharp DW, Lacy PE, Slavin S . Transplantation of islet cells across major histocompatibility barriers after total lymphoid irradiation and infusion of allogeneic bone marrow cells. Diabetes 1982; 31(Suppl 4): 63–68.

    PubMed  Google Scholar 

  42. Exner BG, Fowler K, Ildstad ST . Tolerance induction for islet transplantation. Ann Transplant 1997; 2: 77–80.

    CAS  PubMed  Google Scholar 

  43. Rossini AA et al. Induction of immunological tolerance to islet allografts. Cell Transplant 1996; 5: 49–52.

    CAS  PubMed  Google Scholar 

  44. Domenick MA, Ildstad ST . Impact of bone marrow transplantation on type I diabetes. World J Surg 2001; 25: 474–480.

    CAS  PubMed  Google Scholar 

  45. Good RA, Verjee T . Historical and current perspectives on bone marrow transplantation for prevention and treatment of immunodeficiencies and autoimmunities. Biol Blood Marrow Transplant 2001; 7: 123–135.

    CAS  PubMed  Google Scholar 

  46. Mathieu C, Bouillon R, Rutgeerts O, Waer M . Induction of mixed bone marrow chimerism as potential therapy for autoimmune (type I) diabetes: experience in the NOD model. Transplant Proc 1995; 27: 640–641.

    CAS  PubMed  Google Scholar 

  47. Mathieu C, Vandeputte M, Bouillon R, Waer M . Protection against autoimmune diabetes by induction of mixed bone marrow chimerism. Transplant Proc 1993; 25: 1266–1267.

    CAS  PubMed  Google Scholar 

  48. Li H, Kaufman CL, Ildstad ST . Allogeneic chimerism induces donor-specific tolerance to simultaneous islet allografts in nonobese diabetic mice. Surgery 1995; 118: 192–197; discussion 197–198.

    CAS  PubMed  Google Scholar 

  49. Li H, Inverardi L, Ricordi C . Chimerism-induced remission of overt diabetes in nonobese diabetic mice. Transplant Proc 1999; 31: 640.

    CAS  PubMed  Google Scholar 

  50. Zorina TD et al. Distinct characteristics and features of allogeneic chimerism in the NOD mouse model of autoimmune diabetes. Cell Transplant 2002; 11: 113–123.

    PubMed  Google Scholar 

  51. Feili-Hariri M et al. Immunotherapy of NOD mice with bone marrow-derived dendritic cells. Diabetes 1999; 48: 2300–2308.

    CAS  PubMed  Google Scholar 

  52. Clare-Salzler MJ et al. Prevention of diabetes in nonobese diabetic mice by dendritic cell transfer. J Clin Invest 1992; 90: 741–748.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Giannoukakis N et al. Prolongation of cardiac allograft survival using dendritic cells treated with NF-κB decoy oligodeoxyribonucleotides. Mol Ther 2000; 1: 430–437.

    CAS  PubMed  Google Scholar 

  54. Lu L, Thomson AW . Manipulation of dendritic cells for tolerance induction in transplantation and autoimmune disease. Transplantation 2002; 73: S19–22.

    CAS  PubMed  Google Scholar 

  55. Lu L et al. Adenoviral delivery of CTLA4Ig into myeloid dendritic cells promotes their in vitro tolerogenicity and survival in allogeneic recipients. Gene Therapy 1999; 6: 554–563.

    CAS  PubMed  Google Scholar 

  56. Lu L et al. Genetic engineering of dendritic cells to express immunosuppressive molecules (viral IL-10, TGF-β, and CTLA4Ig). J Leukoc Biol 1999; 66: 293–296.

    CAS  PubMed  Google Scholar 

  57. Thomson AW, Lu L . Dendritic cells as regulators of immune reactivity: implications for transplantation. Transplantation 1999; 68: 1–8.

    CAS  PubMed  Google Scholar 

  58. Lee WC et al. Phenotype, function, and in vivo migration and survival of allogeneic dendritic cell progenitors genetically engineered to express TGF-β. Transplantation 1998; 66: 1810–1817.

    CAS  PubMed  Google Scholar 

  59. Takayama T et al. Retroviral delivery of viral interleukin-10 into myeloid dendritic cells markedly inhibits their allostimulatory activity and promotes the induction of T-cell hyporesponsiveness. Transplantation 1998; 66: 1567–1574.

    CAS  PubMed  Google Scholar 

  60. Berney T et al. Transplantation of islets of Langerhans: new developments. Swiss Med Wkly 2001; 131: 671–680.

    CAS  PubMed  Google Scholar 

  61. Boker A et al. Human islet transplantation: update. World J Surg 2001; 25: 481–486.

    CAS  PubMed  Google Scholar 

  62. Berney T, Ricordi C . Islet cell transplantation: the future? Langenbecks Arch Surg 2000; 385: 373–378.

    CAS  PubMed  Google Scholar 

  63. Berney T, Ricordi C . Islet transplantation. Cell Transplant 1999; 8: 461–464.

    CAS  PubMed  Google Scholar 

  64. Rosenbloom AL et al. Therapeutic controversy: prevention and treatment of diabetes in children. J Clin Endocrinol Metab 2000; 85: 494–522.

    CAS  PubMed  Google Scholar 

  65. Wilson K, Eisenbarth GS . Immunopathogenesis and immunotherapy of type 1 diabetes. Annu Rev Med 1990; 41: 497–508.

    CAS  PubMed  Google Scholar 

  66. Papoz L et al. Probability of remission in individual in early adult insulin dependent diabetic patients. Results from the Cyclosporine Diabetes French Study Group. Diabetes Metab 1990; 16: 303–310.

    CAS  Google Scholar 

  67. Shimada A et al. T-cell insulitis found in anti-GAD65+ diabetes with residual β-cell function. A case report. Diabetes Care 1999; 22: 615–617.

    CAS  PubMed  Google Scholar 

  68. Hamamoto Y et al. Recovery of function and mass of endogenous β-cells in streptozotocin-induced diabetic rats treated with islet transplantation. Biochem Biophys Res Commun 2001; 287: 104–109.

    CAS  PubMed  Google Scholar 

  69. Rasmussen SB et al. Functional rest through intensive treatment with insulin and potassium channel openers preserves residual β-cell function and mass in acutely diabetic BB rats. Horm Metab Res 2000; 32: 294–300.

    CAS  PubMed  Google Scholar 

  70. Mayer A et al. The relationship between peripheral T-cell reactivity to insulin, clinical remissions and cytokine production in type 1 (insulin- dependent) diabetes mellitus. J Clin Endocrinol Metab 1999; 84: 2419–2424.

    CAS  PubMed  Google Scholar 

  71. Finegood DT, Weir GC, Bonner-Weir S . Prior streptozotocin treatment does not inhibit pancreas regeneration after 90% pancreatectomy in rats. Am J Physiol 1999; 276: E822–827.

    CAS  PubMed  Google Scholar 

  72. Chatenoud L, Thervet E, Primo J, Bach JF . Anti-CD3 antibody induces long-term remission of overt autoimmunity in nonobese diabetic mice. Proc Natl Acad Sci USA 1994; 91: 123–127.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Herold KC et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N Engl J Med 2002; 346: 1692–1698.

    CAS  PubMed  Google Scholar 

  74. Corbett JA, McDaniel ML . Intraislet release of interleukin 1 inhibits β-cell function by inducing β-cell expression of inducible nitric oxide synthase. J Exp Med 1995; 181: 559–568.

    CAS  PubMed  Google Scholar 

  75. Heitmeier MR, Scarim AL, Corbett JA . Interferon-gamma increases the sensitivity of islets of Langerhans for inducible nitric-oxide synthase expression induced by interleukin 1. J Biol Chem 1997; 272: 13697–13704.

    CAS  PubMed  Google Scholar 

  76. Scarim AL et al. Evidence for the presence of type I IL-1 receptors on β-cells of islets of Langerhans. Biochim Biophys Acta 1997; 1361: 313–320.

    CAS  PubMed  Google Scholar 

  77. Faustman DL . Reversal of established autoimmune diabetes by in situ β-cell regeneration. Ann N Y Acad Sci 2002; 961: 40.

    PubMed  Google Scholar 

  78. Mottram PL et al. Remission and pancreas isograft survival in recent onset diabetic NOD mice after treatment with low-dose anti-CD3 monoclonal antibodies. Transpl Immunol 2002; 10: 63–72.

    CAS  PubMed  Google Scholar 

  79. French MB et al. Transgenic expression of mouse proinsulin II prevents diabetes in nonobese diabetic mice. Diabetes 1997; 46: 34–39.

    CAS  PubMed  Google Scholar 

  80. Miyazaki T et al. Prevention of autoimmune insulitis in nonobese diabetic mice by expression of major histocompatibility complex class I Ld molecules. Proc Natl Acad Sci USA 1992; 89: 9519–9523.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Ridgway WM et al. Analysis of the role of variation of major histocompatibility complex class II expression on nonobese diabetic (NOD) peripheral T-cell response. J Exp Med 1998; 188: 2267–2275.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Ridgway WM, Fathman CG . The association of MHC with autoimmune diseases: understanding the pathogenesis of autoimmune diabetes. Clin Immunol Immunopathol 1998; 86: 3–10.

    CAS  PubMed  Google Scholar 

  83. Johnson EA et al. Inhibition of autoimmune diabetes in nonobese diabetic mice by transgenic restoration of H2-E MHC class II expression: additive, but unequal, involvement of multiple APC subtypes. J Immunol 2001; 167: 2404–2410.

    CAS  PubMed  Google Scholar 

  84. Gerling IC, Serreze DV, Christianson SW, Leiter EH . Intrathymic islet cell transplantation reduces β-cell autoimmunity and prevents diabetes in NOD/Lt mice. Diabetes 1992; 41: 1672–1676.

    CAS  PubMed  Google Scholar 

  85. Jiang Y et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418: 41–49.

    CAS  PubMed  Google Scholar 

  86. Schwartz RE et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J Clin Invest 2002; 109: 1291–1302.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Reyes M, Verfaillie CM . Characterization of multipotent adult progenitor cells, a subpopulation of mesenchymal stem cells. Ann N Y Acad Sci 2001; 938: 231–233; discussion 233–235.

    CAS  PubMed  Google Scholar 

  88. Wagers AJ, Christensen JL, Weissman IL . Cell fate determination from stem cells. Gene Therapy 2002; 9: 606–612.

    CAS  PubMed  Google Scholar 

  89. Leykin I, Nikolic B, Sykes M . Mixed bone marrow chimerism as a treatment for autoimmune diabetes. Transplant Proc 2001; 33: 120.

    CAS  PubMed  Google Scholar 

  90. Steptoe RJ, Thomson AW . Dendritic cells and tolerance induction. Clin Exp Immunol 1996; 105: 397–402.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Takayama T et al. Retroviral delivery of viral interleukin-10 into myeloid dendritic cells markedly inhibits their allostimulatory activity and promotes the induction of T-cell hyporesponsiveness. Transplantation 1998; 66: 1567–1574.

    CAS  PubMed  Google Scholar 

  92. Lu L et al. Transduction of dendritic cells with adenoviral vectors encoding CTLA4-Ig markedly reduces their allostimulatory activity. Transplant Proc 1999; 31(1–2): 797.

    CAS  PubMed  Google Scholar 

  93. Lee WC et al. Phenotype, function and in vivo migration and survival of allogeneic dendritic cell progenitors genetically engi-neered to express TGF-β. Transplantation 1998; 66(12): 1810–1817.

    CAS  PubMed  Google Scholar 

  94. Sharif S, Arreaza GA, Zucker P, Delovitch TL . Regulatory natural killer T cells protect against spontaneous and recurrent type 1 diabetes. Ann NY Acad Sci 2002; 958: 77–88.

    CAS  PubMed  Google Scholar 

  95. Naumov YN et al. Activation of CD1d-restricted T cells protects NOD mice from developing diabetes by regulating dendritic cell subsets. Proc Natl Acad Sci USA 2001; 98: 13838–13843.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Sharif S, Delovitch TL . Regulation of immune responses by natural killer T cells. Arch Immunol Ther Exp (Warsz) 2001; 49: S23–S31.

    CAS  Google Scholar 

  97. Sharif S et al. Activation of natural killer T cells by α-galactosylceramide treatment prevents the onset and recurrence of autoimmune Type 1 diabetes. Nat Med 2001; 7: 1057–1062.

    CAS  PubMed  Google Scholar 

  98. Hong S et al. The natural killer T-cell ligand α-galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice. Nat Med 2001; 7: 1052–1056.

    CAS  PubMed  Google Scholar 

  99. Pugliese A et al. Self-antigen-presenting cells expressing diabetes-associated autoantigens exist in both thymus and peripheral lymphoid organs. J Clin Invest 2001; 107: 555–564.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Giannoukakis N et al. Prolongation of cardiac allograft survival using dendritic cells treated with NF-κB decoy oligodeoxyribonucleotides. Mol Ther 2000; 1: 430–437.

    CAS  PubMed  Google Scholar 

  101. Shapiro AM et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 2000; 343: 230–238.

    CAS  PubMed  Google Scholar 

  102. Ryan EA, Lakey JR, Shapiro AM . Clinical results after islet transplantation. J Investig Med 2001; 49: 559–562.

    CAS  PubMed  Google Scholar 

  103. Shapiro AM, Ryan EA, Lakey JR . Pancreatic islet transplantation in the treatment of diabetes mellitus. Best Pract Res Clin Endocrinol Metab 2001; 15: 241–264.

    CAS  PubMed  Google Scholar 

  104. Ryan EA et al. Clinical outcomes and insulin secretion after islet transplantation with the Edmonton protocol. Diabetes 2001; 50: 710–719.

    CAS  PubMed  Google Scholar 

  105. Bottino R et al. Preservation of human islet cell functional mass by anti-oxidative action of a novel SOD mimic compound. Diabetes 2002; 51: 2561–2567.

    CAS  PubMed  Google Scholar 

  106. Jaeschke H . Vascular oxidant stress and hepatic ischemia/reperfusion injury. Free Radic Res Commun 1991; 121–3: 737–743.

    Google Scholar 

  107. Jaeschke H . Reactive oxygen and ischemia/reperfusion injury of the liver. Chem Biol Interact 1991; 79: 115–136.

    CAS  PubMed  Google Scholar 

  108. Paraskevas S et al. Cell loss in isolated human islets occurs by apoptosis. Pancreas 2000; 20: 270–276.

    CAS  PubMed  Google Scholar 

  109. Rosenberg L, Wang R, Paraskevas S, Maysinger D . Structural and functional changes resulting from islet isolation lead to islet cell death. Surgery 1999; 126: 393–398.

    CAS  PubMed  Google Scholar 

  110. Nagano H, Tilney NL . Chronic allograft failure: the clinical problem. Am J Med Sci 1997; 313: 305–309.

    CAS  PubMed  Google Scholar 

  111. Bulkley GB . Free radical-mediated reperfusion injury: a selective review. Br J Cancer Suppl 1987; 8: 66–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Pileggi A et al. Heme oxygenase-1 induction in islet cells results in protection from apoptosis and improved in vivo function after transplantation. Diabetes 2001; 50: 1983–1991.

    CAS  PubMed  Google Scholar 

  113. Tobiasch E, Gunther L, Bach FH . Heme oxygenase-1 protects pancreatic β-cells from apoptosis caused by various stimuli. J Investig Med 2001; 49, 566–571.

    CAS  PubMed  Google Scholar 

  114. Contreras JL et al. Gene transfer of the Bcl-2 gene confers cytoprotection to isolated adult porcine pancreatic islets exposed to xenoreactive antibodies and complement. Surgery 2001; 130: 166–174.

    CAS  PubMed  Google Scholar 

  115. Contreras JL et al. Cytoprotection of pancreatic islets before and soon after transplantation by gene transfer of the anti-apoptotic Bcl-2 gene. Transplantation 2001; 71: 1015–1023.

    CAS  PubMed  Google Scholar 

  116. Lortz S et al. Protection of insulin-producing RINm5F cells against cytokine-mediated toxicity through overexpression of antioxidant enzymes. Diabetes 2000; 49: 1123–1130.

    CAS  PubMed  Google Scholar 

  117. Hotta M et al. Pancreatic β-cell-specific expression of thioredoxin, an antioxidative and antiapoptotic protein, prevents autoimmune and streptozotocin-induced diabetes. J Exp Med 1998; 188: 1445–1451.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Embury J et al. Proteins linked to a protein transduction domain efficiently transduce pancreatic islets. Diabetes 2001; 50: 1706–1713.

    CAS  PubMed  Google Scholar 

  119. Piganelli JD et al. A metalloporphyrin-based superoxide dismutase mimic inhibits adoptive transfer of autoimmune diabetes by a diabetogenic T-cell clone. Diabetes 2002; 51: 347–355.

    CAS  PubMed  Google Scholar 

  120. Jaeschke H et al. Mechanisms of inflammatory liver injury: adhesion molecules and cytotoxicity of neutrophils. Toxicol Appl Pharmacol 1996; 139: 213–226.

    CAS  PubMed  Google Scholar 

  121. Jaeschke H . Chemokines, neutrophils, and inflammatory liver injury. Shock 1996; 6: 403–404.

    CAS  PubMed  Google Scholar 

  122. Dairaghi DJ et al. HHV8-encoded vMIP-I selectively engages chemokine receptor CCR8. Agonist and antagonist profiles of viral chemokines. J Biol Chem 1999; 274: 21569–21574.

    CAS  PubMed  Google Scholar 

  123. Howard OM, Oppenheim JJ, Wang JM . Chemokines as molecular targets for therapeutic intervention. J Clin Immunol 1999; 19: 280–292.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Dong H, Woo SL . Hepatic insulin production for type 1 diabetes. Trends Endocrinol Metab 2001; 12: 441–446.

    CAS  PubMed  Google Scholar 

  125. Dong H et al. Hepatic insulin expression improves glycemic control in type 1 diabetic rats. Diabetes Res Clin Pract 2001; 52: 153–163.

    CAS  PubMed  Google Scholar 

  126. Thule PM, Liu JM . Regulated hepatic insulin gene therapy of STZ-diabetic rats. Gene Therapy 2000; 7: 1744–1752.

    CAS  PubMed  Google Scholar 

  127. Mitanchez D et al. 5-Oxoprolinuria: a cause of neonatal metabolic acidosis. Acta Paediatr 2001; 90: 827–828.

    CAS  PubMed  Google Scholar 

  128. Mitanchez D et al. Regulated expression of mature human insulin in the liver of transgenic mice. FEBS Lett 1998; 421: 285–289.

    CAS  PubMed  Google Scholar 

  129. Mitanchez D, Doiron B, Chen R, Kahn A . Glucose-stimulated genes and prospects of gene therapy for type I diabetes. Endocrinol Rev 1997; 18: 520–540.

    CAS  Google Scholar 

  130. Flotte T et al. Efficient ex vivo transduction of pancreatic islet cells with recombinant adeno-associated virus vectors. Diabetes 2001; 50: 515–520.

    CAS  PubMed  Google Scholar 

  131. Lee HC et al. Remission in models of type 1 diabetes by gene therapy using a single- chain insulin analogue. Nature 2000; 408: 483–488.

    CAS  PubMed  Google Scholar 

  132. Yang YW, Kotin RM . Glucose-responsive gene delivery in pancreatic Islet cells via recombinant adeno-associated viral vectors. Pharm Res 2000; 17: 1056–1061.

    CAS  PubMed  Google Scholar 

  133. Yang YW, Hsieh YC . Regulated secretion of proinsulin/insulin from human hepatoma cells transduced by recombinant adeno-associated virus. Biotechnol Appl Biochem 2001; 33: 133–140.

    CAS  PubMed  Google Scholar 

  134. Bochan MR et al. Stable transduction of human pancreatic adenocarcinoma cells, rat fibroblasts, and bone marrow-derived stem cells with recombinant adeno-associated virus containing the rat preproinsulin II gene. Transplant Proc 1998; 30: 453–454.

    CAS  PubMed  Google Scholar 

  135. Kasten-Jolly J et al. Reversal of hyperglycemia in diabetic NOD mice by human proinsulin gene therapy. Transplant Proc 1997; 29: 2216–2218.

    CAS  PubMed  Google Scholar 

  136. Bartlett RJ et al. Toward engineering skeletal muscle to release peptide hormone from the human pre-proinsulin gene. Transplant Proc 1998; 30: 451.

    CAS  PubMed  Google Scholar 

  137. Simpson AM et al. Gene therapy of diabetes: glucose-stimulated insulin secretion in a human hepatoma cell line (HEP G2ins/g). Gene Therapy 1997; 4: 1202–1215.

    CAS  PubMed  Google Scholar 

  138. Simonson GD, Groskreutz DJ, Gorman CM, MacDonald MJ . Synthesis and processing of genetically modified human proinsulin by rat myoblast primary cultures. Hum Gene Ther 1996; 7: 71–78.

    CAS  PubMed  Google Scholar 

  139. Vollenweider F, Irminger JC, Halban PA . Substrate specificity of proinsulin conversion in the constitutive pathway of transfected FAO (hepatoma) cells. Diabetologia 1993; 36: 1322–1325.

    CAS  PubMed  Google Scholar 

  140. Vollenweider F et al. Processing of proinsulin by transfected hepatoma (FAO) cells. J Biol Chem 1992; 267: 14629–14636.

    CAS  PubMed  Google Scholar 

  141. Groskreutz DJ, Sliwkowski MX, Gorman CM . Genetically engineered proinsulin constitutively processed and secreted as mature, active insulin. J Biol Chem 1994; 269: 6241–6245.

    CAS  PubMed  Google Scholar 

  142. Thule PM, Liu J, Phillips LS . Glucose regulated production of human insulin in rat hepatocytes. Gene Therapy 2000; 7: 205–214.

    CAS  PubMed  Google Scholar 

  143. Chen R, Meseck ML, Woo SL . Auto-regulated hepatic insulin gene expression in type 1 diabetic rats. Mol Ther 2001; 3: 584–590.

    CAS  PubMed  Google Scholar 

  144. Chen R, Meseck M, McEvoy RC, Woo SL . Glucose-stimulated and self-limiting insulin production by glucose 6-phosphatase promoter driven insulin expression in hepatoma cells. Gene Therapy 2000; 7: 1802–1809.

    CAS  PubMed  Google Scholar 

  145. Iynedjian PB et al. Transcriptional induction of glucokinase gene by insulin in cultured liver cells and its repression by the glucagon-cAMP system. J Biol Chem 1989; 264: 21824–21829.

    CAS  PubMed  Google Scholar 

  146. Iynedjian PB et al. Differential expression and regulation of the glucokinase gene in liver and islets of Langerhans. Proc Natl Acad Sci USA 1989; 86: 7838–7842.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Liu JS et al. Cyclic AMP induction of phosphoenolpyruvate carboxykinase (GTP) gene transcription is mediated by multiple promoter elements. J Biol Chem 1991; 266: 19095–19102.

    CAS  PubMed  Google Scholar 

  148. Klemm DJ et al. In vitro analysis of promoter elements regulating transcription of the phosphoenolpyruvate carboxykinase (GTP) gene. Mol Cell Biol 1990; 10: 480–485.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Lipes MA et al. Insulin-secreting non-islet cells are resistant to autoimmune destruction. Proc Natl Acad Sci USA 1996; 93: 8595–8600.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Lipes MA, Davalli AM, Cooper EM . Genetic engineering of insulin expression in nonislet cells: implications for β-cell replacement therapy for insulin-dependent diabetes mellitus. Acta Diabetol 1997; 34: 2–5.

    CAS  PubMed  Google Scholar 

  151. Cheung AT et al. Glucose-dependent insulin release from genetically engineered K cells. Science 2000; 290: 1959–1962.

    CAS  PubMed  Google Scholar 

  152. Cornelius JG, Tchernev V, Kao KJ, Peck AB . In vitro-generation of islets in long-term cultures of pluripotent stem cells from adult mouse pancreas. Horm Metab Res 1997; 29: 271–277.

    CAS  PubMed  Google Scholar 

  153. Beattie GM et al. Regulation of proliferation and differentiation of human fetal pancreatic islet cells by extracellular matrix, hepatocyte growth factor, and cell–cell contact. Diabetes 1996; 45: 1223–1228.

    CAS  PubMed  Google Scholar 

  154. Beattie GM, Lopez AD, Hayek A . In vivo maturation and growth potential of human fetal pancreases: fresh versus cultured tissue. Transplant Proc 1995; 27: 3343.

    CAS  PubMed  Google Scholar 

  155. Beattie GM, Hayek A . Outcome of human fetal pancreatic transplants according to implantation site. Transplant Proc 1994; 26, 3299.

    CAS  PubMed  Google Scholar 

  156. Beattie GM, Cirulli V, Lopez AD, Hayek A . Ex vivo expansion of human pancreatic endocrine cells. J Clin Endocrinol Metab 1997; 82: 1852–1856.

    CAS  PubMed  Google Scholar 

  157. Lumelsky N et al. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 2001; 292: 1389–1394.

    CAS  PubMed  Google Scholar 

  158. McKay R . Stem cells–hype and hope. Nature 2000; 406: 361–364.

    PubMed  Google Scholar 

  159. Colman A, Kind A . Therapeutic cloning: concepts and practicalities. Trends Biotechnol 2000; 18: 192–196.

    CAS  PubMed  Google Scholar 

  160. Kind A, Colman A . Therapeutic cloning: needs and prospects. Semin Cell Dev Biol 1999; 10: 279–286.

    CAS  PubMed  Google Scholar 

  161. Lanza RP, Cibelli JB, West MD . Human therapeutic cloning. Nat Med 1999; 5: 975–977.

    CAS  PubMed  Google Scholar 

  162. D'Ambra R et al. Regulation of insulin secretion from β-cell lines derived from transgenic mice insulinomas resembles that of normal β-cells. Endocrinology 1990; 126: 2815–2822.

    CAS  PubMed  Google Scholar 

  163. Efrat S et al. Conditional transformation of a pancreatic β-cell line derived from transgenic mice expressing a tetracycline-regulated oncogene. Proc Natl Acad Sci USA 1995; 92: 3576–3580.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Efrat S . Cell-based therapy for insulin-dependent diabetes mellitus. Eur J Endocrinol 1998; 138: 129–133.

    CAS  PubMed  Google Scholar 

  165. Fleischer N et al. Functional analysis of a conditionally transformed pancreatic β-cell line. Diabetes 1998; 47: 1419–1425.

    CAS  PubMed  Google Scholar 

  166. Hayek A et al. Growth factor/matrix-induced proliferation of human adult β-cells. Diabetes 1995; 44: 1458–1460.

    CAS  PubMed  Google Scholar 

  167. Otonkoski T et al. Hepatocyte growth factor/scatter factor has insulinotropic activity in human fetal pancreatic cells. Diabetes 1994; 43: 947–953.

    CAS  PubMed  Google Scholar 

  168. Otonkoski T et al. A role for hepatocyte growth factor/scatter factor in fetal mesenchyme-induced pancreatic β-cell growth. Endocrinology 1996; 137: 3131–3139.

    CAS  PubMed  Google Scholar 

  169. Levine F, Leibowitz G . Towards gene therapy of diabetes mellitus. Mol Med Today 1999; 5: 165–171.

    CAS  PubMed  Google Scholar 

  170. Beattie GM et al. Sustained proliferation of PDX-1+ cells derived from human islets. Diabetes 1999; 48: 1013–1019.

    CAS  PubMed  Google Scholar 

  171. Habener JF, Stoffers DA . A newly discovered role of transcription factors involved in pancreas development and the pathogenesis of diabetes mellitus. Proc Assoc Am Physicians 1998; 110: 12–21.

    CAS  PubMed  Google Scholar 

  172. Madsen OD et al. Transcription factors contributing to the pancreatic β-cell phenotype. Horm Metab Res 1997; 29: 265–270.

    CAS  PubMed  Google Scholar 

  173. Sander M, German MS . The β-cell transcription factors and development of the pancreas. J Mol Med 1997; 75: 327–340.

    CAS  PubMed  Google Scholar 

  174. Ferber S et al. Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nat Med 2000; 6: 568–572.

    CAS  PubMed  Google Scholar 

  175. Wu KL et al. Hepatocyte nuclear factor 3β is involved in pancreatic β-cell-specific transcription of the pdx-1 gene. Mol Cell Biol 1997; 17: 6002–6013.

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Oster A et al. Rat endocrine pancreatic development in relation to two homeobox gene products (Pdx-1 and Nkx 6.1). J Histochem Cytochem 1998; 46: 707–715.

    CAS  PubMed  Google Scholar 

  177. Hill DJ, Hogg J . Growth factor control of pancreatic B cell hyperplasia. Baillieres Clin Endocrinol Metab 1991; 5: 689–698.

    CAS  PubMed  Google Scholar 

  178. Ilieva A et al. Pancreatic islet cell survival following islet isolation: the role of cellular interactions in the pancreas. J Endocrinol 1999; 161: 357–364.

    CAS  PubMed  Google Scholar 

  179. Miettinen PJ, Otonkoski T, Voutilainen R . Insulin-like growth factor-II and transforming growth factor-α in developing human fetal pancreatic islets. J Endocrinol 1993; 138: 127–136.

    CAS  PubMed  Google Scholar 

  180. Petrik J, Arany E, McDonald TJ, Hill DJ . Apoptosis in the pancreatic islet cells of the neonatal rat is associated with a reduced expression of insulin-like growth factor II that may act as a survival factor. Endocrinology 1998; 139: 2994–3004.

    CAS  PubMed  Google Scholar 

  181. Petrik J et al. Overexpression of insulin-like growth factor-II in transgenic mice is associated with pancreatic islet cell hyperplasia. Endocrinology 1999; 140: 2353–2363.

    CAS  PubMed  Google Scholar 

  182. Markoff E, Beattie GM, Hayek A, Lewis UJ . Effects of prolactin and glycosylated prolactin on (pro)insulin synthesis and insulin release from cultured rat pancreatic islets. Pancreas 1990; 5: 99–103.

    CAS  PubMed  Google Scholar 

  183. Kawai M, Kishi K . In vitro studies of the stimulation of insulin secretion and B-cell proliferation by rat placental lactogen-II during pregnancy in rats. J Reprod Fertil 1997; 109: 145–152.

    CAS  PubMed  Google Scholar 

  184. Billestrup N, Nielsen JH . The stimulatory effect of growth hormone, prolactin, and placental lactogen on β-cell proliferation is not mediated by insulin-like growth factor-I. Endocrinology 1991; 129: 883–888.

    CAS  PubMed  Google Scholar 

  185. Vasavada RC et al. Overexpression of parathyroid hormone-related protein in the pancreatic islets of transgenic mice causes islet hyperplasia, hyperinsulinemia, and hypoglycemia. J Biol Chem 1996; 271: 1200–1208.

    CAS  PubMed  Google Scholar 

  186. Porter SE et al. Progressive pancreatic islet hyperplasia in the islet-targeted, parathyroid hormone-related protein-overexpressing mouse. Endocrinology 1998; 139: 3743–3751.

    CAS  PubMed  Google Scholar 

  187. Wang RN, Rehfeld JF, Nielsen FC, Kloppel G . Expression of gastrin and transforming growth factor-α during duct to islet cell differentiation in the pancreas of duct-ligated adult rats. Diabetologia 1997; 40: 887–893.

    CAS  PubMed  Google Scholar 

  188. Miettinen PJ . Transforming growth factor-α and epidermal growth factor expression in human fetal gastrointestinal tract. Pediatr Res 1993; 33: 481–486.

    CAS  PubMed  Google Scholar 

  189. Baeza N, Hart A, Ahlgren U, Edlund H . Insulin promoter factor-1 controls several aspects of β-cell identity. Diabetes 2001; 50(Suppl 1): S36.

    CAS  PubMed  Google Scholar 

  190. Hart AW, Baeza N, Apelqvist A, Edlund H . Attenuation of FGF signalling in mouse β-cells leads to diabetes. Nature 2000; 408: 864–868.

    CAS  PubMed  Google Scholar 

  191. Yamaoka T, Itakura M . Development of pancreatic islets (review). Int J Mol Med 1999; 3: 247–261.

    CAS  PubMed  Google Scholar 

  192. Mally MI, Otonkoski T, Lopez AD, Hayek A . Developmental gene expression in the human fetal pancreas. Pediatr Res 1994; 36: 537–544.

    CAS  PubMed  Google Scholar 

  193. Unno M et al. Islet β-cell regeneration and reg genes. Adv Exp Med Biol 1992; 321: 61–66.

    CAS  PubMed  Google Scholar 

  194. Zenilman ME, Chen J, Danesh B, Zheng QH . Characteristics of rat pancreatic regenerating protein. Surgery 1998; 124: 855–863.

    CAS  PubMed  Google Scholar 

  195. Zenilman ME, Chen J, Magnuson TH . Effect of reg protein on rat pancreatic ductal cells. Pancreas 1998; 17: 256–261.

    CAS  PubMed  Google Scholar 

  196. Bone AJ, Banister SH, Zhang S . The REG gene and islet cell repair and renewal in type 1 diabetes. Adv Exp Med Biol 1997; 426: 321–327.

    CAS  PubMed  Google Scholar 

  197. Vinik A et al. Induction of pancreatic islet neogenesis. Horm Metab Res 1997; 29: 278–293.

    CAS  PubMed  Google Scholar 

  198. Rafaeloff R et al. Cloning and sequencing of the pancreatic islet neogenesis associated protein (INGAP) gene and its expression in islet neogenesis in hamsters. J Clin Invest 1997; 99: 2100–2109.

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Bonner-Weir S et al. In vitro cultivation of human islets from expanded ductal tissue. Proc Natl Acad Sci USA 2000; 97: 7999–8004.

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Dai Y et al. Targeted disruption of the α 1,3-galactosyltransferase gene in cloned pigs. Nat Biotechnol 2002; 20: 251–255.

    CAS  PubMed  Google Scholar 

  201. Koike C et al. Molecular basis of evolutionary loss of the α 1,3-galactosyltransferase gene in higher primates. J Biol Chem 2002; 277: 10114–10120.

    CAS  PubMed  Google Scholar 

  202. Gainer AL et al. Improved survival of biolistically transfected mouse islet allografts expressing CTLA4-Ig or soluble Fas ligand. Transplantation 1998; 66: 194–199.

    CAS  PubMed  Google Scholar 

  203. Gainer AL et al. Expression of CTLA4-Ig by biolistically transfected mouse islets promotes islet allograft survival. Transplantation 1997; 63: 1017–1021.

    CAS  PubMed  Google Scholar 

  204. Welsh N, Oberg C, Hellerstrom C, Welsh M . Liposome mediated in vitro transfection of pancreatic islet cells. Biomed Biochim Acta 1990; 49: 1157–1164.

    CAS  PubMed  Google Scholar 

  205. Benhamou PY et al. Standardization of procedure for efficient ex vivo gene transfer into porcine pancreatic islets with cationic liposomes. Transplantation 1997; 63: 1798–1803.

    CAS  PubMed  Google Scholar 

  206. Smith DK et al. Interleukin-4 or interleukin-10 expressed from adenovirus-transduced syngeneic islet grafts fails to prevent β-cell destruction in diabetic NOD mice. Transplantation 1997; 64: 1040–1049.

    CAS  PubMed  Google Scholar 

  207. Yasuda H et al. Local expression of immunoregulatory IL-12p40 gene prolonged syngeneic islet graft survival in diabetic NOD mice. J Clin Invest 1998; 102: 1807–1814.

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Benhamou PY et al. Decreased alloreactivity to human islets secreting recombinant viral interleukin 10. Transplantation 1996; 62: 1306–1312.

    CAS  PubMed  Google Scholar 

  209. Judge TA et al. Utility of adenoviral-mediated Fas ligand gene transfer to modulate islet allograft survival. Transplantation 1998; 66: 426–434.

    CAS  PubMed  Google Scholar 

  210. von Herrath MG, Efrat S, Oldstone MB, Horwitz MS . Expression of adenoviral E3 transgenes in β-cells prevents autoimmune diabetes. Proc Natl Acad Sci USA 1997; 94: 9808–9813.

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Weber M et al. Adenoviral transfection of isolated pancreatic islets: a study of programmed cell death (apoptosis) and islet function. J Surg Res 1997; 69: 23–32.

    CAS  PubMed  Google Scholar 

  212. Csete ME et al. Efficient gene transfer to pancreatic islets mediated by adenoviral vectors. Transplantation 1995; 59: 263–268.

    CAS  PubMed  Google Scholar 

  213. Raper SE, DeMatteo RP . Adenovirus-mediated in vivo gene transfer and expression in normal rat pancreas. Pancreas 1996; 12: 401–410.

    CAS  PubMed  Google Scholar 

  214. Saldeen J et al. Efficient gene transfer to dispersed human pancreatic islet cells in vitro using adenovirus-polylysine/DNA complexes or polycationic liposomes. Diabetes 1996; 45: 1197–1203.

    CAS  PubMed  Google Scholar 

  215. Giannoukakis N et al. Adenoviral gene transfer of the interleukin-1 receptor antagonist protein to human islets prevents IL-1β-induced β-cell impairment and activation of islet cell apoptosis in vitro. Diabetes 1999; 48: 1730–1736.

    CAS  PubMed  Google Scholar 

  216. Grey ST et al. A20 inhibits cytokine-induced apoptosis and nuclear factor κ B-dependent gene activation in islets. J Exp Med 1999; 190: 1135–1146.

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Muruve DA, Manfro RC, Strom TB, Libermann TA . Ex vivo adenovirus-mediated gene delivery leads to long-term expression in pancreatic islet transplants. Transplantation 1997; 64: 542–546.

    CAS  PubMed  Google Scholar 

  218. Becker TC et al. Overexpression of hexokinase I in isolated islets of Langerhans via recombinant adenovirus. Enhancement of glucose metabolism and insulin secretion at basal but not stimulatory glucose levels. J Biol Chem 1994; 269: 21234–21238.

    CAS  PubMed  Google Scholar 

  219. Giannoukakis N, Rudert WA, Trucco M, Robbins PD . Protection of human islets from the effects of interleukin-1β by adenoviral gene transfer of an IκB repressor. J Biol Chem, 2000; 275(47): 36509–36513.

    CAS  PubMed  Google Scholar 

  220. Kapturczak M et al. Transduction of human and mouse pancreatic islet cells using a bicistronic recombinant adeno-associated viral vector. Mol Ther 2002; 5: 154–160.

    CAS  PubMed  Google Scholar 

  221. Shifrin AL et al. Adenoviral vector-mediated insulin gene transfer in the mouse pancreas corrects streptozotocin-induced hyperglycemia. Gene Therapy 2001; 8: 1480–1489.

    CAS  PubMed  Google Scholar 

  222. Alexander AM et al. Indoleamine 2,3-dioxygenase expression in transplanted NOD Islets prolongs graft survival after adoptive transfer of diabetogenic splenocytes. Diabetes 2002; 51: 356–365.

    CAS  PubMed  Google Scholar 

  223. Uchikoshi F et al. Prevention of autoimmune recurrence and rejection by adenovirus-mediated CTLA4Ig gene transfer to the pancreatic graft in BB rat. Diabetes 1999; 48: 652–657.

    CAS  PubMed  Google Scholar 

  224. Moriscot C et al. Contribution of adenoviral-mediated superoxide dismutase gene transfer to the reduction in nitric oxide-induced cytotoxicity on human islets and INS-1 insulin-secreting cells. Diabetologia 2000; 43: 625–631.

    CAS  PubMed  Google Scholar 

  225. Guo Z et al. Efficient gene transfer and expression in islets by an adenoviral vector that lacks all viral genes. Cell Transplant 1999; 8: 661–671.

    CAS  PubMed  Google Scholar 

  226. Giannoukakis N et al. Prevention of β-cell dysfunction and apoptosis activation in human islets by adenoviral gene transfer of the insulin-like growth factor I. Gene Therapy 2000; 7: 2015–2022.

    CAS  PubMed  Google Scholar 

  227. Giannoukakis N, Rudert WA, Trucco M, Robbins PD . Protection of human islets from the effects of interleukin-1β by adenoviral gene transfer of an Iκ B repressor. J Biol Chem 2000; 275: 36509–36513.

    CAS  PubMed  Google Scholar 

  228. Giannoukakis N et al. Adenoviral gene transfer of the interleukin-1 receptor antagonist protein to human islets prevents IL-1β-induced β-cell impairment and activation of islet cell apoptosis in vitro. Diabetes 1999; 48: 1730–1736.

    CAS  PubMed  Google Scholar 

  229. Leibowitz G et al. Gene transfer to human pancreatic endocrine cells using viral vectors. Diabetes 1999; 48: 745–753.

    CAS  PubMed  Google Scholar 

  230. Gallichan WS et al. Lentivirus-mediated transduction of islet grafts with interleukin 4 results in sustained gene expression and protection from insulitis. Hum Gene Ther 1998; 9: 2717–2726.

    CAS  PubMed  Google Scholar 

  231. Ju Q et al. Transduction of non-dividing adult human pancreatic β-cells by an integrating lentiviral vector. Diabetologia 1998; 41: 736–739.

    CAS  PubMed  Google Scholar 

  232. Giannoukakis N et al. Infection of intact human islets by a lentiviral vector. Gene Therapy 1999; 6: 1545–1551.

    CAS  PubMed  Google Scholar 

  233. Liu Y et al. Expression of the bcl-2 gene from a defective HSV-1 amplicon vector protects pancreatic β-cells from apoptosis. Hum Gene Ther 1996; 7: 1719–1726.

    CAS  PubMed  Google Scholar 

  234. Rabinovitch A et al. Transfection of human pancreatic islets with an anti-apoptotic gene (bcl-2) protects β-cells from cytokine-induced destruction. Diabetes 1999; 48: 1223–1229.

    CAS  PubMed  Google Scholar 

  235. Mi Z, Mai J, Lu X, Robbins PD . Characterization of a class of cationic peptides able to facilitate efficient protein transduction in vitro and in vivo. Mol Ther 2000; 2: 339–347.

    CAS  PubMed  Google Scholar 

  236. Dupraz P et al. Lentivirus-mediated Bcl-2 expression in βTC-tet cells improves resistance to hypoxia and cytokine-induced apoptosis while preserving in vitro and in vivo control of insulin secretion. Gene Therapy 1999; 6: 1160–1169.

    CAS  PubMed  Google Scholar 

  237. Zhou YP et al. Overexpression of Bcl-x(L) in β-cells prevents cell death but impairs mitochondrial signal for insulin secretion. Am J Physiol Endocrinol Metab 2000; 278: E340–351.

    CAS  PubMed  Google Scholar 

  238. Ye J, Laychock SG . A protective role for heme oxygenase expression in pancreatic islets exposed to interleukin-1β. Endocrinology 1998; 139: 4155–4163.

    CAS  PubMed  Google Scholar 

  239. Carpenter L, Cordery D, Biden TJ . Inhibition of protein kinase Cδ protects rat INS-1 cells against interleukin-1β and streptozotocin-induced apoptosis. Diabetes 2002; 51: 317–324.

    CAS  PubMed  Google Scholar 

  240. Dupraz P et al. Dominant negative MyD88 proteins inhibit interleukin-1β/interferon-γ-mediated induction of nuclear factor κ B-dependent nitrite production and apoptosis in β-cells. J Biol Chem 2000; 275: 37672–37678.

    CAS  PubMed  Google Scholar 

  241. Burkart V et al. Natural resistance of human β-cells toward nitric oxide is mediated by heat shock protein 70. J Biol Chem 2000; 275: 19521–19528.

    CAS  PubMed  Google Scholar 

  242. Xu B, Moritz JT, Epstein PN . Overexpression of catalase provides partial protection to transgenic mouse β-cells. Free Radic Biol Med 1999; 27: 830–837.

    CAS  PubMed  Google Scholar 

  243. Benhamou PY et al. Adenovirus-mediated catalase gene transfer reduces oxidant stress in human, porcine and rat pancreatic islets. Diabetologia 1998; 41: 1093–1100.

    CAS  PubMed  Google Scholar 

  244. Hohmeier HE et al. Stable expression of manganese superoxide dismutase (MnSOD) in insulinoma cells prevents IL-1β- induced cytotoxicity and reduces nitric oxide production. J Clin Invest 1998; 101: 1811–1820.

    CAS  PubMed  PubMed Central  Google Scholar 

  245. Gallichan WS et al. Lentivirus-mediated transduction of islet grafts with interleukin 4 results in sustained gene expression and protection from insulitis. Hum Gene Ther 1998; 9: 2717–2726.

    CAS  PubMed  Google Scholar 

  246. Deng S et al. IL-10 and TGF-β gene transfer to rodent islets: effect on xenogeneic islet graft survival in naive and B-cell-deficient mice. Transplant Proc 1997; 29: 2207–2208.

    CAS  PubMed  Google Scholar 

  247. Hao W, Palmer JP . Recombinant human transforming growth factor β does not inhibit the effects of interleukin-1β on pancreatic islet cells. J Interferon Cytokine Res 1995; 15: 1075–1081.

    CAS  PubMed  Google Scholar 

  248. Kang SM et al. Fas ligand expression in islets of Langerhans does not confer immune privilege and instead targets them for rapid destruction. Nat Med 1997; 3: 738–743.

    CAS  PubMed  Google Scholar 

  249. Mathieu C, Casteels K, Bouillon R, Waer M . Protection against autoimmune diabetes in mixed bone marrow chimeras: mechanisms involved. J Immunol 1997; 158: 1453–1457.

    CAS  PubMed  Google Scholar 

  250. Girman P et al. The effect of bone marrow transplantation on survival of allogeneic pancreatic islets with short-term tacrolimus conditioning in rats. Ann Transplant 2001; 6: 43–45.

    CAS  PubMed  Google Scholar 

  251. Seung E et al. Allogeneic hematopoietic chimerism in mice treated with sublethal myeloablation and anti-CD154 antibody: absence of graft-versus-host disease, induction of skin allograft tolerance, and prevention of recurrent autoimmunity in islet-allografted NOD/Lt mice. Blood 2000; 95: 2175–2182.

    CAS  PubMed  Google Scholar 

  252. Li H, Colson YL, Ildstad ST . Mixed allogeneic chimerism achieved by lethal and nonlethal conditioning approaches induces donor-specific tolerance to simultaneous islet allografts. Transplantation 1995; 60: 523–529.

    CAS  PubMed  Google Scholar 

  253. Li H et al. Mixed xenogeneic chimerism (mouse+rat→mouse) to induce donor-specific tolerance to sequential or simultaneous islet xenografts. Transplantation 1994; 57: 592–598.

    CAS  PubMed  Google Scholar 

  254. Rossini AA et al. Islet cell transplantation tolerance. Transplantation 2001; 72: S43–46.

    CAS  PubMed  Google Scholar 

  255. Ali A et al. Major histocompatibility complex class I peptide-pulsed host dendritic cells induce antigen-specific acquired thymic tolerance to islet cells. Transplantation 2000; 69: 221–226.

    CAS  PubMed  Google Scholar 

  256. Bertry-Coussot L et al. Long-term reversal of established autoimmunity upon transient blockade of the LFA-1/intercellular adhesion molecule-1 pathway. J Immunol 2002; 168: 3641–3648.

    CAS  PubMed  Google Scholar 

  257. Georgiou HM, Brady JL, Silva A, Lew AM . Genetic modification of an islet tumor cell line inhibits its rejection. Transplant Proc 1997; 29: 1032–1033.

    CAS  PubMed  Google Scholar 

  258. Lew AM et al. Secretion of CTLA4Ig by an SV40 T antigen-transformed islet cell line inhibits graft rejection against the neoantigen. Transplantation 1996; 62: 83–89.

    CAS  PubMed  Google Scholar 

  259. Weber CJ et al. CTLA4-Ig prolongs survival of microencapsulated rabbit islet xenografts in spontaneously diabetic Nod mice. Transplant Proc 1996; 28: 821–823.

    CAS  PubMed  Google Scholar 

  260. Brady JL, Lew AM . Additive efficacy of CTLA4Ig and OX40Ig secreted by genetically modified grafts. Transplantation 2000; 69: 724–730.

    CAS  PubMed  Google Scholar 

  261. Sutherland RM et al. Protective effect of CTLA4Ig secreted by transgenic fetal pancreas allografts. Transplantation 2000; 69: 1806–1812.

    CAS  PubMed  Google Scholar 

  262. Goudy K et al. Adeno-associated virus vector-mediated IL-10 gene delivery prevents type 1 diabetes in NOD mice. Proc Natl Acad Sci USA 2001; 98: 13913–13918.

    CAS  PubMed  PubMed Central  Google Scholar 

  263. Ko KS, Lee M, Koh JJ, Kim SW . Combined administration of plasmids encoding IL-4 and IL-10 prevents the development of autoimmune diabetes in nonobese diabetic mice. Mol Ther 2001; 4: 313–316.

    CAS  PubMed  Google Scholar 

  264. Koh JJ et al. Degradable polymeric carrier for the delivery of IL-10 plasmid DNA to prevent autoimmune insulitis of NOD mice. Gene Therapy 2000; 7: 2099–2104.

    CAS  PubMed  Google Scholar 

  265. Yang Z et al. Suppression of autoimmune diabetes by viral IL-10 gene transfer. J Immunol 2002; 168: 6479–6485.

    CAS  PubMed  Google Scholar 

  266. Zipris D, Karnieli E . A single treatment with IL-4 via retrovirally transduced lymphocytes partially protects against diabetes in BioBreeding (BB) rats. Jop 2002; 3: 76–82.

    PubMed  Google Scholar 

  267. Chang Y, Prud'homme GJ . Intramuscular administration of expression plasmids encoding interferon-γ receptor/IgG1 or IL-4/IgG1 chimeric proteins protects from autoimmunity. J Gene Med 1999; 1: 415–423.

    CAS  PubMed  Google Scholar 

  268. Prud'homme GJ, Chang Y . Prevention of autoimmune diabetes by intramuscular gene therapy with a nonviral vector encoding an interferon-γ receptor/IgG1 fusion protein. Gene Therapy 1999; 6: 771–777.

    CAS  PubMed  Google Scholar 

  269. Piccirillo CA, Chang Y, Prud'homme GJ . TGF-β1 somatic gene therapy prevents autoimmune disease in nonobese diabetic mice. J Immunol 1998; 161: 3950–3956.

    CAS  PubMed  Google Scholar 

  270. Balasa B et al. Vaccination with glutamic acid decarboxylase plasmid DNA protects mice from spontaneous autoimmune diabetes and B7/CD28 costimulation circumvents that protection. Clin Immunol 2001; 99: 241–252.

    CAS  PubMed  Google Scholar 

  271. Efrat S et al. Adenovirus early region 3(E3) immunomodulatory genes decrease the incidence of autoimmune diabetes in NOD mice. Diabetes 2001; 50: 980–984.

    CAS  PubMed  Google Scholar 

  272. Weiner HL et al. Oral tolerance: immunologic mechanisms and treatment of animal and human organ-specific autoimmune diseases by oral administration of autoantigens. Annu Rev Immunol 1994; 12: 809–837.

    CAS  PubMed  Google Scholar 

  273. Polanski M, Melican NS, Zhang J, Weiner HL . Oral administration of the immunodominant B-chain of insulin reduces diabetes in a co-transfer model of diabetes in the NOD mouse and is associated with a switch from Th1 to Th2 cytokines. J Autoimmun 1997; 10: 339–346.

    CAS  PubMed  Google Scholar 

  274. Bergerot I et al. Insulin B-chain reactive CD4+ regulatory T-cells induced by oral insulin treatment protect from type 1 diabetes by blocking the cytokine secretion and pancreatic infiltration of diabetogenic effector T-cells. Diabetes 1999; 48: 1720–1729.

    CAS  PubMed  Google Scholar 

  275. Prud'homme GJ, Chang Y, Li X . Immunoinhibitory DNA vaccine protects against autoimmune diabetes through cDNA encoding a selective CTLA-4 (CD152) ligand. Hum Gene Ther 2002; 13: 395–406.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bottino, R., Lemarchand, P., Trucco, M. et al. Gene- and cell-based therapeutics for type I diabetes mellitus. Gene Ther 10, 875–889 (2003). https://doi.org/10.1038/sj.gt.3302015

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302015

This article is cited by

Search

Quick links