Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Expression of thymidine kinase driven by an endothelial-specific promoter inhibits tumor growth of Lewis lung carcinoma cells in transgenic mice

Abstract

The possibility of inhibiting tumor growth by limiting angiogenesis has raised considerable interest. In this study, we examined the feasibility of inhibiting tumor growth by targeting a suicide gene in the endothelium. Toxicity must be directed solely to angiogenic cells. Therefore, we used the herpes simplex virus-thymidine kinase (TK) gene, in combination with the prodrug ganciclovir (GCV), which affects replicative cells. To test this strategy, we produced transgenic mice carrying the TK gene driven by the vascular endothelial (VE)-cadherin promoter. Lewis lung carcinoma cells were injected subcutaneously to establish tumors and to test the effect of GCV on tumor growth. In two independent transgenic lines, GCV treatment (75 mg/kg/day) resulted in a 66–71% reduction of tumor volume at day 20 postimplantation compared to wild-type mice (650 and 550 versus 1930 mm3, P<0.02 and 0.01, respectively), whereas no significant difference was observed when vehicle alone was injected. Tumor growth inhibition was accompanied by a marked reduction in tumor vascular density (151 versus 276 vessels/mm2, P<0.05) and an increase in tumor cell death, suggesting that tumor growth inhibition was caused by a reduction in tumor angiogenesis. Our data support the potential utility of endothelial targeting of suicide genes in cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2a–l
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Folkman J . Angiogenesis and breast cancer. J Clin Oncol 1994; 12: 441–443.

    Article  CAS  PubMed  Google Scholar 

  2. Fidler IJ, Ellis LM . The implications of angiogenesis for the biology and therapy of cancer metastasis. Cell 1994; 79: 185–188.

    Article  CAS  PubMed  Google Scholar 

  3. Carmeliet P, Jain RK . Angiogenesis in cancer and other diseases. Nature 2000; 407: 249–257.

    Article  CAS  PubMed  Google Scholar 

  4. Folkman J . Seminars in Medicine of the Beth Israel Hospital, Boston. Clinical applications of research on angiogenesis [see comments]. N Engl J Med 1995; 333: 1757–1763.

    Article  CAS  PubMed  Google Scholar 

  5. O'Reilly MS et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 1994; 79: 315–328.

    Article  CAS  PubMed  Google Scholar 

  6. O'Reilly MS et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 1997; 88: 277–285.

    Article  CAS  PubMed  Google Scholar 

  7. Gasparini G . The rationale and future potential of angiogenesis inhibitors in neoplasia. Drugs 1999; 58: 17–38.

    Article  CAS  PubMed  Google Scholar 

  8. Bouma-ter Steege JC, Mayo KH, Griffioen AW . Angiostatic proteins and peptides. Crit Rev Eukaryot Gene Exp 2001; 11: 319–334.

    CAS  Google Scholar 

  9. Hohenester E, Sasaki T, Mann K, Timpl R . Variable zinc coordination in endostatin. J Mol Biol 2000; 297: 1–6.

    Article  CAS  PubMed  Google Scholar 

  10. Dhanabal M et al. Endostatin: yeast production, mutants, and antitumor effect in renal cell carcinoma. Cancer Res 1999; 59: 189–197.

    CAS  PubMed  Google Scholar 

  11. Jouanneau E et al. Lack of antitumor activity of recombinant endostatin in a human neuroblastoma xenograft model. J Neurooncol 2001; 51: 11–18.

    Article  CAS  PubMed  Google Scholar 

  12. Lynch CM et al. Adeno-associated virus vectors for vascular gene delivery. Circ Res 1997; 80: 497–505.

    CAS  PubMed  Google Scholar 

  13. Mavria G, Jager U, Porter CD . Generation of a high titre retroviral vector for endothelial cell-specific gene expression in vivo. Gene Ther 2000; 7: 368–376.

    Article  CAS  PubMed  Google Scholar 

  14. Qian HS et al. Improved adenoviral vector for vascular gene therapy: beneficial effects on vascular function and inflammation. Circ Res 2001; 88: 911–917.

    Article  CAS  PubMed  Google Scholar 

  15. Ma Z et al. Redirecting adenovirus to pulmonary endothelium by cationic liposomes. Gene Ther 2002; 9: 176–182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lin P et al. Antiangiogenic gene therapy targeting the endothelium-specific receptor tyrosine kinase Tie2. Proc Natl Acad Sci USA 1998; 95: 8829–8834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Blezinger P et al. Systemic inhibition of tumor growth and tumor metastases by intramuscular administration of the endostatin gene. Nat Biotechnol 1999; 17: 343–348.

    Article  CAS  PubMed  Google Scholar 

  18. Compagni A et al. Fibroblast growth factors are required for efficient tumor angiogenesis. Cancer Res 2000; 60: 7163–7169.

    CAS  PubMed  Google Scholar 

  19. Feldman AL et al. Antiangiogenic gene therapy of cancer utilizing a recombinant adenovirus to elevate systemic endostatin levels in mice. Cancer Res 2000; 60: 1503–1506.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Jin RJ et al. The application of an anti-angiogenic gene (thrombospondin-1) in the treatment of human prostate cancer xenografts. Cancer Gene Ther 2000; 7: 1537–1542.

    Article  CAS  PubMed  Google Scholar 

  21. Sacco MG et al. Systemic gene therapy with anti-angiogenic factors inhibits spontaneous breast tumor growth and metastasis in MMTVneu transgenic mice. Gene Ther 2001; 8: 67–70.

    Article  CAS  PubMed  Google Scholar 

  22. Ding I et al. Intratumoral administration of endostatin plasmid inhibits vascular growth and perfusion in MCa-4 murine mammary carcinomas. Cancer Res 2001; 61: 526–531.

    CAS  PubMed  Google Scholar 

  23. Kuo CJ et al. Comparative evaluation of the antitumor activity of antiangiogenic proteins delivered by gene transfer. Proc Natl Acad Sci USA 2001; 98: 4605–4610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gyorffy S, Palmer K, Gauldie J . Adenoviral vector expressing murine angiostatin inhibits a model of breast cancer metastatic growth in the lungs of mice. Am J Pathol 2001; 159: 1137–1147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hampl M et al. Therapeutic effects of viral vector-mediated antiangiogenic gene transfer in malignant ascites. Hum Gene Ther 2001; 12: 1713–1729.

    Article  CAS  PubMed  Google Scholar 

  26. Jin X et al. Evaluation of endostatin antiangiogenesis gene therapy in vitro and in vivo. Cancer Gene Ther 2001; 8: 982–989.

    Article  CAS  PubMed  Google Scholar 

  27. Spencer DM . Developments in suicide genes for preclinical and clinical applications. Curr Opin Mol Ther 2000; 2: 433–440.

    CAS  PubMed  Google Scholar 

  28. Greco O, Dachs GU . Gene directed enzyme/prodrug therapy of cancer: historical appraisal and future prospectives. J Cell Physiol 2001; 187: 22–36.

    Article  CAS  PubMed  Google Scholar 

  29. Allen RG et al. Targeted ablation of pituitary pre-proopiomelanocortin cells by herpes simplex virus-1 thymidine kinase differentially regulates mRNAs encoding the adrenocorticotropin receptor and aldosterone synthase in the mouse adrenal gland. Mol Endocrinol 1995; 9: 1005–1016.

    CAS  PubMed  Google Scholar 

  30. Hood JD et al. Tumor regression by targeted gene delivery to the neovasculature. Science 2002; 296: 2404–2407.

    Article  CAS  PubMed  Google Scholar 

  31. Hirano T et al. HVJ-liposome-mediated transfection of HSVtk gene driven by AFP promoter inhibits hepatic tumor growth of hepatocellular carcinoma in SCID mice. Gene Ther 2001; 8: 80–83.

    Article  CAS  PubMed  Google Scholar 

  32. Ido A et al. Gene therapy targeting for hepatocellular carcinoma: selective and enhanced suicide gene expression regulated by a hypoxia-inducible enhancer linked to a human alpha-fetoprotein promoter. Cancer Res 2001; 61: 3016–3021.

    CAS  PubMed  Google Scholar 

  33. Tronik-Le Roux D et al. Suppression of erythro-megakaryocytopoiesis and the induction of reversible thrombocytopenia in mice transgenic for the thymidine kinase gene targeted by the platelet glycoprotein alpha IIb promoter. J Exp Med 1995; 181: 2141–2151.

    Article  CAS  PubMed  Google Scholar 

  34. Vandier D et al. Inhibition of glioma cells in vitro and in vivo using a recombinant adenoviral vector containing an astrocyte-specific promoter. Cancer Gene Ther 2000; 7: 1120–1126.

    Article  CAS  PubMed  Google Scholar 

  35. Lee EJ et al. Adenovirus-mediated targeted expression of toxic genes to adrenocorticotropin-producing pituitary tumors using the proopiomelanocortin promoter. J Clin Endocrinol Metab 2001; 86: 3400–3409.

    CAS  PubMed  Google Scholar 

  36. Zhang R, Straus FH, DeGroot LJ . Adenoviral-mediated gene therapy for thyroid carcinoma using thymidine kinase controlled by thyroglobulin promoter demonstrates high specificity and low toxicity. Thyroid 2001; 11: 115–123.

    Article  CAS  PubMed  Google Scholar 

  37. Selvakumaran M et al. Ovarian epithelial cell lineage-specific gene expression using the promoter of a retrovirus-like element. Cancer Res 2001; 61: 1291–1295.

    CAS  PubMed  Google Scholar 

  38. Lampugnani MG et al. A novel endothelial-specific membrane protein is a marker of cell-cell contacts. J Cell Biol 1992; 118: 1511–1522.

    Article  CAS  PubMed  Google Scholar 

  39. Breviario F et al. Functional properties of human vascular endothelial cadherin (7B4/cadherin-5), an endothelium-specific cadherin. Arterioscler Thromb Vasc Biol 1995; 15: 1229–1239.

    Article  CAS  PubMed  Google Scholar 

  40. Breier G et al. Molecular cloning and expression of murine vascular endothelial-cadherin in early stage development of cardiovascular system. Blood 1996; 87: 630–641.

    CAS  PubMed  Google Scholar 

  41. Liao F et al. Selective targeting of angiogenic tumor vasculature by vascular endothelial-cadherin antibody inhibits tumor growth without affecting vascular permeability. Cancer Res 2002; 62: 2567–2575.

    CAS  PubMed  Google Scholar 

  42. Huber P et al. Genomic structure and chromosomal mapping of the mouse VE-cadherin gene (Cdh5). Genomics 1996; 32: 21–28.

    Article  CAS  PubMed  Google Scholar 

  43. Gory S et al. Requirement of a GT box (Sp1 site) and two Ets binding sites for vascular endothelial cadherin gene transcription. J Biol Chem 1998; 273: 6750–6755.

    Article  CAS  PubMed  Google Scholar 

  44. Gory S et al. The vascular endothelial-cadherin promoter directs endothelial-specific expression in transgenic mice. Blood 1999; 93: 184–192.

    CAS  PubMed  Google Scholar 

  45. Lelievre E et al. ETS1 lowers capillary endothelial cell density at confluence and induces the expression of VE-cadherin. Oncogene 2000; 19: 2438–2446.

    Article  CAS  PubMed  Google Scholar 

  46. Garlanda C et al. Progressive growth in immunodeficient mice and host cell recruitment by mouse endothelial cells transformed by polyoma middle-sized T antigen: implications for the pathogenesis of opportunistic vascular tumors. Proc Natl Acad Sci USA 1994; 91: 7291–7295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Thornberry NA, Lazebnik Y . Caspases: enemies within. Science 1998; 281: 1312–1316.

    Article  CAS  PubMed  Google Scholar 

  48. Gavrieli Y, Sherman Y, Ben-Sasson SA . Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 1992; 119: 493–501.

    Article  CAS  PubMed  Google Scholar 

  49. Liu X, Zou H, Slaughter C, Wang X . DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 1997; 89: 175–184.

    Article  CAS  PubMed  Google Scholar 

  50. Ram Z et al. The effect of thymidine kinase transduction and ganciclovir therapy on tumor vasculature and growth of 9L gliomas in rats. J Neurosurg 1994; 81: 256–260.

    Article  CAS  PubMed  Google Scholar 

  51. Pramudji C et al. In situ prostate cancer gene therapy using a novel adenoviral vector regulated by the caveolin-1 promoter. Clin Cancer Res 2001; 7: 4272–4279.

    CAS  PubMed  Google Scholar 

  52. Mavria G, Porter CD . Reduced growth in response to ganciclovir treatment of subcutaneous xenografts expressing HSV-tk in the vascular compartment. Gene Ther 2001; 8: 913–920.

    Article  CAS  PubMed  Google Scholar 

  53. Brunelle JK, Chandel NS . Oxygen deprivation induced cell death: An update. Apoptosis 2002; 7: 475–482.

    Article  CAS  PubMed  Google Scholar 

  54. Freeman SM et al. The ‘bystander effect’: tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res 1993; 53: 5274–5283.

    CAS  PubMed  Google Scholar 

  55. Freeman SM, Ramesh R, Marrogi AJ . Immune system in suicide-gene therapy. Lancet 1997; 349: 2–3.

    Article  CAS  PubMed  Google Scholar 

  56. Colombo BM et al. The ‘bystander effect’: association of U-87 cell death with ganciclovir- mediated apoptosis of nearby cells and lack of effect in athymic mice. Hum Gene Ther 1995; 6: 763–772.

    Article  CAS  PubMed  Google Scholar 

  57. Vile RG et al. Generation of an anti-tumour immune response in a non-immunogenic tumour: HSVtk killing in vivo stimulates a mononuclear cell infiltrate and a Th1-like profile of intratumoural cytokine expression. Int J Cancer 1997; 71: 267–274.

    Article  CAS  PubMed  Google Scholar 

  58. Frank DK, Frederick MJ, Liu TJ, Clayman GL . Bystander effect in the adenovirus-mediated wild-type p53 gene therapy model of human squamous cell carcinoma of the head and neck. Clin Cancer Res 1998; 4: 2521–2528.

    CAS  PubMed  Google Scholar 

  59. Gough MJ et al. Macrophages orchestrate the immune response to tumor cell death. Cancer Res 2001; 61: 7240–7247.

    CAS  PubMed  Google Scholar 

  60. Kaneko Y, Tsukamoto A . Gene therapy of hepatoma: bystander effects and non-apoptotic cell death induced by thymidine kinase and ganciclovir. Cancer Lett 1995; 96: 105–110.

    Article  CAS  PubMed  Google Scholar 

  61. Melcher A et al. Tumor immunogenicity is determined by the mechanism of cell death via induction of heat shock protein expression. Nat Med 1998; 4: 581–587.

    Article  CAS  PubMed  Google Scholar 

  62. Canfield V, West AB, Goldenring JR, Levenson R . Genetic ablation of parietal cells in transgenic mice: a new model for analyzing cell lineage relationships in the gastric mucosa. Proc Natl Acad Sci USA 1996; 93: 2431–2435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liu CS et al. VP22 enhanced intercellular trafficking of HSV thymidine kinase reduced the level of ganciclovir needed to cause suicide cell death. J Gene Med 2001; 3: 145–152.

    Article  CAS  PubMed  Google Scholar 

  64. Hayashi K, Hayashi T, Sun HD, Takeda Y . Potentiation of ganciclovir toxicity in the herpes simplex virus thymidine kinase/ganciclovir administration system by ponicidin. Cancer Gene Ther 2000; 7: 45–52.

    Article  CAS  PubMed  Google Scholar 

  65. Valerie K et al. Substantially improved in vivo radiosensitization of rat glioma with mutant HSV-TK and acyclovir. Cancer Gene Ther 2001; 8: 3–8.

    Article  CAS  PubMed  Google Scholar 

  66. Kanazawa T et al. Gamma-rays enhance rAAV-mediated transgene expression and cytocidal effect of AAV-HSVtk/ganciclovir on cancer cells. Cancer Gene Ther 2001; 8: 99–106.

    Article  CAS  PubMed  Google Scholar 

  67. Jain RK . Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 2001; 7: 987–989.

    Article  CAS  PubMed  Google Scholar 

  68. Bainbridge JW et al. Inhibition of retinal neovascularisation by gene transfer of soluble VEGF receptor sFlt-1. Gene Ther 2002; 9: 320–326.

    Article  CAS  PubMed  Google Scholar 

  69. Liu Y et al. Factors influencing the efficiency of cationic liposome-mediated intravenous gene delivery. Nat Biotechnol 1997; 15: 167–173.

    Article  CAS  PubMed  Google Scholar 

  70. Uyechi LS, Gagne L, Thurston G, Szoka Jr FC . Mechanism of lipoplex gene delivery in mouse lung: binding and internalization of fluorescent lipid and DNA components. Gene Ther 2001; 8: 828–836.

    Article  CAS  PubMed  Google Scholar 

  71. Schlaeger TM et al. Uniform vascular-endothelial-cell-specific gene expression in both embryonic and adult transgenic mice. Proc Natl Acad Sci USA 1997; 94: 3058–3063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kappel A et al. Identification of vascular endothelial growth factor (VEGF) receptor-2 (Flk-1) promoter/enhancer sequences sufficient for angioblast and endothelial cell-specific transcription in transgenic mice. Blood 1999; 93: 4284–4292.

    CAS  PubMed  Google Scholar 

  73. Tybulewicz VL et al. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell 1991; 65: 1153–1163.

    Article  CAS  PubMed  Google Scholar 

  74. Hogan B, Beddington R, Costantini F, Lacy E . Manipulating the Mouse Embryo. Cold Spring Harbor Laboratory Press: New York, NY, 1994.

    Google Scholar 

  75. Sambrook J, Fritsch EF, Maniatis T . Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York, 1989.

    Google Scholar 

  76. Al-Shawi R et al. A Mup promoter-thymidine kinase reporter gene shows relaxed tissue- specific expression and confers male sterility upon transgenic mice. Mol Cell Biol 1988; 8: 4821–4828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. al-Shawi R et al. The herpes simplex virus type 1 thymidine kinase is expressed in the testes of transgenic mice under the control of a cryptic promoter. Mol Cell Biol 1991; 11: 4207–4216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Vittet D et al. Embryonic stem cells differentiate in vitro to endothelial cells through successive maturation steps. Blood 1996; 88: 3424–3431.

    CAS  PubMed  Google Scholar 

  79. Vermeulen PB et al. Quantification of angiogenesis in solid human tumours: an international consensus on the methodology and criteria of evaluation. Eur J Cancer 1996; 32A: 2474–2484.

    Article  CAS  PubMed  Google Scholar 

  80. Filleur S et al. In vivo mechanisms by which tumors producing thrombospondin 1 bypass its inhibitory effects. Genes Dev 2001; 15: 1373–1382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Drs Tim Fong and Marielle Chiron at Aventis for providing protocols for the tumor model and the anti-TK antibodies. We are grateful to Dr Didier Grunwald from DRDC-CIS lab for image acquisition on confocal microscope. This project was supported by grants from the CEA and Aventis.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dancer, A., Julien, S., Bouillot, S. et al. Expression of thymidine kinase driven by an endothelial-specific promoter inhibits tumor growth of Lewis lung carcinoma cells in transgenic mice. Gene Ther 10, 1170–1178 (2003). https://doi.org/10.1038/sj.gt.3301981

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301981

Keywords

This article is cited by

Search

Quick links