Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Persistent hepatic expression of human apo A-I after transfer with a helper-virus independent adenoviral vector

Abstract

Gene transfer with ‘gutted’ vectors is associated with persistent transgene expression and absence of hepatotoxicity, but the requirement of helper viruses hampers efficient production and leads to contamination of viral batches with these helper-viruses. In the present study, gene transfer with a helper-virus independent E1/E3/E4-deleted adenoviral vector induced persistent expression of human apo A-I (200 ± 16 mg/dl at day 35, 190 ± 15 mg/dl at 4 months, 170 ± 16 mg/dl at 6 months) and stable transgene DNA levels (3.5 ± 0.60 at day 35, 3.3 ± 0.39 at 4 months, 3.1 ± 0.47 mg/dl at 6 months) in C57BL/6 mice in the absence of significant toxicity. The vector contained the 1.5 kb human α1-antitrypsin promoter in front of the genomic human apo A-I sequence and four copies of the human apo E enhancer (hAAT.gA-I.4xapoE) and was deleted in E1, E3 and E4. Reintroduction of E4 ORF 3 and E4 ORF 4 in the viral backbone caused a more than four-fold decline of transgene DNA between day 35 and 4 months after transfer both in wild-type and in C57BL/6 SCID and C57BL/6 Rag-1−/− mice, indicating that the effect of E4 ORF 3 and E4 ORF 4 is independent of a cellular immune response against viral epitopes. Co-injection of an E1-deleted vector containing no expression cassette and the E1/E3/E4-deleted vector containing the hAAT.gA-I.4xapoE expression cassette indicated that E4 gene products destabilize transgene DNA in trans. Gene transfer with an E1/E3/E4-deleted vector containing only E4 ORF 3 and the hAAT.gA-I.4xapoE expression cassette was associated with transgene DNA decline, but not with hepatotoxicity, indicating that transgene DNA persistence and hepatotoxicity are dissociated processes. After transfer with E1/E3/E4-deleted vectors containing expression cassettes with a different promoter or a different position of the apo E enhancers, transgene DNA levels were less stable than after transfer with the vector containing hAAT.gA-I.4xapoE, indicating that the expression cassette is an important determinant of episomal stability. In conclusion, gene transfer with an E1/E3/E4-deleted vector containing the hAAT.gA-I.4xapoE expression cassette induces persistent expression of human apo A-I in the absence of hepatotoxicity. Transgene DNA turnover is independent of an adaptive cellular immune response against viral epitopes and of hepatotoxicity. E1/E3/E4-deleted vectors containing transgenes under control of the hAAT promoter in combination with four copies of the human apo E enhancer may be suitable for hepatocyte-specific overexpression of transgenes after gene transfer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Yang Y et al. Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy Proc Natl Acad Sci USA 1994 91: 4407–4411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yang Y, Ertl HC, Wilson JM . MHC class I-restricted cytotoxic T lymphocytes to viral antigens destroy hepatocytes in mice infected with E1-deleted recombinant adenoviruses Immunity 1994 1: 433–442

    Article  CAS  PubMed  Google Scholar 

  3. Yang Y, Xiang Z, Ertl HC, Wilson JM . Upregulation of class I major histocompatibility complex antigens by interferon gamma is necessary for T-cell-mediated elimination of recombinant adenovirus-infected hepatocytes in vivo Proc Natl Acad Sci USA 1995 92: 7257–7261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yang Y, Wilson JM . Clearance of adenovirus-infected hepatocytes by MHC class I-restricted CD4+ CTLs in vivo J Immunol 1995 155: 2564–2570

    CAS  PubMed  Google Scholar 

  5. Yang Y et al. Immune responses to viral antigens versus transgene product in the elimination of recombinant adenovirus-infected hepatocytes in vivo Gene Therapy 1996 3: 137–144

    PubMed  Google Scholar 

  6. Yang Y, Su Q, Wilson JM . Role of viral antigens in destructive cellular immune responses to adenovirus vector-transduced cells in mouse lungs J Virol 1996 70: 7209–7212

    CAS  PubMed  PubMed Central  Google Scholar 

  7. O'Neal WK et al. Toxicity associated with repeated administration of first-generation adenovirus vectors does not occur with a helper-dependent vector Mol Med 2000 6: 179–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Morral N et al. High doses of a helper-dependent adenoviral vector yield supraphysiological levels of alpha1-antitrypsin with negligible toxicity Hum Gene Ther 1998 9: 2709–2716

    Article  CAS  PubMed  Google Scholar 

  9. Schiedner G et al. Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity Nat Genet 1998 18: 180–183

    Article  CAS  PubMed  Google Scholar 

  10. Morsy MA et al. An adenoviral vector deleted for all viral coding sequences results in enhanced safety and extended expression of a leptin transgene Proc Natl Acad Sci USA 1998 95: 7866–7871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kochanek S . High-capacity adenoviral vectors for gene transfer and somatic gene therapy Hum Gene Ther 1999 10: 2451–2459

    Article  CAS  PubMed  Google Scholar 

  12. Engelhardt JF, Ye X, Doranz B, Wilson JM . Ablation of E2A in recombinant adenoviruses improves transgene persistence and decreases inflammatory response in mouse liver Proc Natl Acad Sci USA 1994 91: 6196–6200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Amalfitano A et al. Production and characterization of improved adenovirus vectors with the E1, E2b and E3 genes deleted J Virol 1998 72: 926–933

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Gorziglia MI et al. Elimination of both E1 and E2 from adenovirus vectors further improves prospects for in vivo human gene therapy J Virol 1996 70: 4173–4178

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gorziglia MI et al. Generation of an adenovirus vector lacking E1, e2a, E3, and all of E4 except open reading frame 3 J Virol 1999 73: 6048–6055

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Dedieu JF et al. Long-term gene delivery into the livers of immunocompetent mice with E1/E4-defective adenoviruses J Virol 1997 71: 4626–4637

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Brough DE et al. Activation of transgene expression by early region 4 is responsible for a high level of persistent transgene expression from adenovirus vectors in vivo J Virol 1997 71: 9206–9213

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Armentano D et al. Effect of the E4 region on the persistence of transgene expression from adenovirus vectors J Virol 1997 71: 2408–2416

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Armentano D et al. E4ORF3 requirement for achieving long-term transgene expression from the cytomegalovirus promoter in adenovirus vectors J Virol 1999 73: 7031–7034

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lusky M et al. Regulation of adenovirus-mediated transgene expression by the viral E4 gene products: requirement for E4 ORF3 J Virol 1999 73: 8308–8319

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Van Linthout S, Collen D, De Geest B . Effect of promoters and enhancers on expression, transgene DNA persistence and hepatotoxicity after adenoviral gene transfer of human apo A-I Hum Gene Ther 2002 13: 829–840

    Article  CAS  PubMed  Google Scholar 

  22. Christ M et al. Modulation of the inflammatory properties and hepatotoxicity of recombinant adenovirus vectors by the viral E4 gene products Hum Gene Ther 2000 11: 415–427

    Article  CAS  PubMed  Google Scholar 

  23. Grave L et al. Differential influence of the E4 adenoviral genes on viral and cellular promoters J Gene Med 2000 2: 433–443

    Article  CAS  PubMed  Google Scholar 

  24. Andrews JL et al. Generation and characterization of E1/E2a/E3/E4-deficient adenoviral vectors encoding human factor VIII Mol Ther 2001 3: 329–336

    Article  CAS  PubMed  Google Scholar 

  25. Gao GP, Yang Y, Wilson JM . Biology of adenovirus vectors with E1 and E4 deletions for liver-directed gene therapy J Virol 1996 70: 8934–8943

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang Q et al. Persistent transgene expression in mouse liver following in vivo gene transfer with a delta E1/delta E4 adenovirus vector Gene Therapy 1997 4: 393–400

    Article  CAS  PubMed  Google Scholar 

  27. Oka K et al. Long-term stable correction of low-density lipoprotein receptor- deficient mice with a helper-dependent adenoviral vector expressing the very low-density lipoprotein receptor Circulation 2001 103: 1274–1281

    Article  CAS  PubMed  Google Scholar 

  28. Gilbert R et al. Dystrophin expression in muscle following gene transfer with a fully deleted (‘gutted’) adenovirus is markedly improved by trans-acting adenoviral gene products Hum Gene Ther 2001 12: 1741–1755

    Article  CAS  PubMed  Google Scholar 

  29. De Geest B, Van Linthout S, Collen D . Sustained expression of human apo A-I following adenoviral gene transfer in mice Gene Therapy 2001 8: 121–127

    Article  CAS  PubMed  Google Scholar 

  30. Alexander-Miller MA, Leggatt GR, Berzofsky JA . Selective expansion of high- or low-avidity cytotoxic T lymphocytes and efficacy for adoptive immunotherapy Proc Natl Acad Sci USA 1996 93: 4102–4107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wadsworth SC, Zhou H, Smith AE, Kaplan JM . Adenovirus vector-infected cells can escape adenovirus antigen-specific cytotoxic T-lymphocyte killing in vivo J Virol 1997 71: 5189–5196

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Michou AI et al. Adenovirus-mediated gene transfer: influence of transgene, mouse strain and type of immune response on persistence of transgene expression Gene Therapy 1997 4: 473–482

    Article  CAS  PubMed  Google Scholar 

  33. Kafri T et al. Cellular immune response to adenoviral vector infected cells does not require de novo viral gene expression: implications for gene therapy Proc Natl Acad Sci USA 1998 95: 11377–11382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schowalter DB et al. Heterologous expression of adenovirus E3-gp19K in an E1a-deleted adenovirus vector inhibits MHC I expression in vitro, but does not prolong transgene expression in vivo Gene Therapy 1997 4: 351–360

    Article  CAS  PubMed  Google Scholar 

  35. Jani A et al. Overcoming cellular immunity to prolong adenoviral-mediated gene expression in sciatic nerve Ann NY Acad Sci 1999 883: 397–414

    Article  CAS  PubMed  Google Scholar 

  36. Jiang ZL et al. Local high-capacity adenovirus-mediated mCTLA4Ig and mCD40Ig expression prolongs recombinant gene expression in skeletal muscle Mol Ther 2001 3: 892–900

    Article  CAS  PubMed  Google Scholar 

  37. Ohman K, Nordqvist K, Akusjarvi G . Two adenovirus proteins with redundant activities in virus growth facilitates tripartite leader mRNA accumulation Virology 1993 194: 50–58

    Article  CAS  PubMed  Google Scholar 

  38. Carvalho T et al. Targeting of adenovirus E1A and E4-ORF3 proteins to nuclear matrix- associated PML bodies J Cell Biol 1995 131: 45–56

    Article  CAS  PubMed  Google Scholar 

  39. Doucas V et al. Adenovirus replication is coupled with the dynamic properties of the PML nuclear structure Genes Dev 1996 10: 196–207

    Article  CAS  PubMed  Google Scholar 

  40. Leppard KN, Everett RD . The adenovirus type 5 E1b 55K and E4 Orf3 proteins associate in infected cells and affect ND10 components J Gen Virol 1999 80: 997–1008

    Article  CAS  PubMed  Google Scholar 

  41. Rosl F, Waldeck W, Zentgraf H, Sauer G . Properties of intracellular bovine papillomavirus chromatin J Virol 1986 58: 500–507

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Tripathy SK, Black HB, Goldwasser E, Leiden JM . Immune responses to transgene-encoded proteins limit the stability of gene expression after injection of replication-defective adenovirus vectors Nat Med 1996 2: 545–550

    Article  CAS  PubMed  Google Scholar 

  43. Svensson EC et al. Long-term erythropoietin expression in rodents and non-human primates following intramuscular injection of a replication-defective adenoviral vector Hum Gene Ther 1997 8: 1797–1806

    Article  CAS  PubMed  Google Scholar 

  44. Chroboczek J, Bieber F, Jacrot B . The sequence of the genome of adenovirus type 5 and its comparison with the genome of adenovirus type 2 Virology 1992 186: 280–285

    Article  CAS  PubMed  Google Scholar 

  45. Chartier C et al. Efficient generation of recombinant adenovirus vectors by homologous recombination in Escherichia coli J Virol 1996 70: 4805–4810

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lusky M et al. In vitro and in vivo biology of recombinant adenovirus vectors with E1, E1/E2A, or E1/E4 deleted J Virol 1998 72: 2022–2032

    CAS  PubMed  PubMed Central  Google Scholar 

  47. De Geest B, Zhao Z, Collen D, Holvoet P . Effects of adenovirus-mediated human apo A-I gene transfer on neointima formation after endothelial denudation in apo E-deficient mice Circulation 1997 96: 4349–4356

    Article  CAS  PubMed  Google Scholar 

  48. Mittereder N, March KL, Trapnell BC . Evaluation of the concentration and bioactivity of adenovirus vectors for gene therapy J Virol 1996 70: 7498–7509

    CAS  PubMed  PubMed Central  Google Scholar 

  49. De Geest B et al. Sustained expression of human apolipoprotein A-I after adenoviral gene transfer in C57BL/6 mice: role of apolipoprotein A-I promoter, apolipoprotein A-I introns, and human apolipoprotein E enhancer Hum Gene Ther 2000 11: 101–112

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Sophie Van Linthout is a Research Assistant of the Instituut voor Wetenschappelijk en Technisch Onderzoek-Vlaanderen. Bart De Geest is a Postdoctoral Fellow of the Fonds voor Wetenschappelijk Onderzoek-Vlaanderen. We thank D Dreyer for expert assistance in adenoviral vector construction. W Fransen and Z Zhang are acknowledged for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Linthout, S., Lusky, M., Collen, D. et al. Persistent hepatic expression of human apo A-I after transfer with a helper-virus independent adenoviral vector. Gene Ther 9, 1520–1528 (2002). https://doi.org/10.1038/sj.gt.3301824

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301824

Keywords

This article is cited by

Search

Quick links