Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Coimmunisation with type I IFN genes enhances protective immunity against cytomegalovirus and myocarditis in gB DNA-vaccinated mice

Abstract

Viral DNA vaccines encoding the glycoprotein B (gB) of cytomegalovirus provide partial protective immunity upon challenge with infectious virus. Although it is known that type I IFN can stimulate the adaptive immune response, their direct use in vaccines has been limited. Here we show that coimmunisation of type I IFN and gB CMV DNA constructs enhances protective immunity in mice. In vivo expression of IFN transgenes ranged from 1.2 to 2.0 × 104 IU/g tibialis anterior muscle. Viral titre in major target organs and the severity of acute CMV-induced myocarditis was reduced preferentially with either IFN-alpha 9 or IFN-beta, but not with IFN-alpha 6, coimmunisation. However, all IFN subtypes investigated markedly reduced chronic myocarditis in gB-vaccinated mice. The early antiviral IgG1 and IgG2a titres were enhanced with IFN-beta coimmunisation. TNF and IL-10 was increased in response to MCMV infection in mice coimmunised with IFN subtypes and viral gB DNA. Indeed T cells from IFN-inoculated mice reduced myocarditis upon in vivo transfer. These results suggest that select type I IFNs may act as a natural adjuvant for the immune response against CMV infection. Type I IFN DNA coimmunisation may provide increased efficacy for viral vaccines and subsequently modulate post-viral chronic inflammatory disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Wells AD, Walsh MC, Bluestone JA, Turka LA . Signaling through CD28 and CTLA-4 controls two distinct forms of T cell anergy Clin Invest 2001 108: 895–904

    Article  CAS  Google Scholar 

  2. Morel Y et al. The TNF superfamily members LIGHT and CD154 (CD40 ligand) costimulate induction of dendritic cell maturation and elicit specific CTL activity J Immunol 2001 176: 2479–2486

    Article  Google Scholar 

  3. Adler B, Ashkar S, Cantor H, Weber GF . Costimulation by extracellular matrix proteins determines the response to TCR ligation Cell Immunol 2001 21: 30–40

    Article  Google Scholar 

  4. Anderson CC, Matzinger P . Danger: the view from the bottom of the cliff Semin Immunol 2000 12: 231–238

    Article  CAS  Google Scholar 

  5. Holowachuk EW, Ruhoff MS . Restoration of abated T cell stimulation activity of mature dendritic cells Biochem Biophys Res Commun 2001 285: 594–597

    Article  CAS  Google Scholar 

  6. Biron C . Interferons α and β as immune regulators – a new look Immunity 2001 14: 661–664

    Article  CAS  Google Scholar 

  7. Kaser A, Tilg H . Interferon-alpha in inflammation and immunity Cell Mol Biol 2001 47: 609–617

    CAS  PubMed  Google Scholar 

  8. Takasu H . Interferon-alpha: an effective adjuvant for peptide-based cytotoxic T-cell vaccines Kurume Med J 2001 48: 171–174

    Article  CAS  Google Scholar 

  9. Sanchez JL et al. Relationship of cytomegalovirus viral load in blood to pneumonitis in lung transplant recipients Transplant 2001 72: 733–735

    Article  CAS  Google Scholar 

  10. Funato T et al. Quantitative evaluation of cytomegalovirus DNA in infantile hepatitis J Viral Hepat 2001 8: 217–222

    Article  CAS  Google Scholar 

  11. Mathew P, Hudnall SD, Elghetany MT, Payne DA . T-gamma gene rearrangement and CMV mononucleosis Am J Hematol 2001 66: 64–66

    Article  CAS  Google Scholar 

  12. Ng TT, Morris DJ, Wilkins EG . Successful diagnosis and management of cytomegalovirus carditis J Infect 1997 34: 243–247

    Article  CAS  Google Scholar 

  13. Schonian U, Crombach M, Maser S, Maisch B . Cytomegalovirus-associated heart muscle disease Eur Heart J 1995 16: 46–49

    Article  Google Scholar 

  14. Fernando S et al. Association of cytomegalovirus infection with post-transplantation cardiac rejection as studied using polymerase chain reaction J Med Virol 1994 42: 396–404

    Article  CAS  Google Scholar 

  15. Herskowitz A et al. Myocarditis and cardiotropic viral infection associated with severe left ventricular dysfunction in late stage infection with human immunodeficiency virus J Am Coll Cardiol 1994 24: 1025–1032

    Article  CAS  Google Scholar 

  16. Arbustini E et al. Histopathologic and molecular profile of human cytomegalovirus infections in patients with heart transplants Am J Clin Pathol 1992 98: 205–213

    Article  CAS  Google Scholar 

  17. Maisch B et al. Cytomegalovirus associated inflammatory heart muscle disease Scand J Infect Dis Suppl 1993 88: 135–148

    CAS  PubMed  Google Scholar 

  18. Ando H, Shiramizu T, Hisanou R . Dilated cardiomyopathy caused by cytomegalovirus infection in a renal transplant recipient Jap Heart J 1992 33: 409–412

    Article  CAS  Google Scholar 

  19. Fujinami RS . Viruses and autoimmune disease - two sides of the same coin? Trends Microbiol 2001 9: 377–381

    Article  CAS  Google Scholar 

  20. Lawson CM, O'Donoghue H, Bartholomaeus WN, Reed WD . Genetic control of mouse cytomegalovirus-induced myocarditis Immunol 1990 69: 20–26

    CAS  Google Scholar 

  21. Lawson CM, O'Donoghue HL, Reed WD . Mouse cytomegalovirus infection induces antibodies which cross react with virus and cardiac myosin: a model for the study of molecular mimicry in the pathogenesis of viral myocarditis Immunol 1992 75: 513–519

    CAS  Google Scholar 

  22. Lawson CM . Evidence for mimicry by viral antigens in animal models of autoimmune disease including myocarditis Cell Mol Life Sci 2000 57: 552–560

    Article  CAS  Google Scholar 

  23. Fairweather D et al. Wild isolates of murine cytomegalovirus induce myocarditis and antibodies that cross-react with virus and cardiac myosin Immunol 1998 94: 263–270

    Article  CAS  Google Scholar 

  24. Cull VS, Bartlett EJ, James CM . Type I interferon gene therapy protects against cytomegalovirus-induced myocarditis Immunol 2002 106: 1–16

    Article  Google Scholar 

  25. Lawson CM, O'Donoghue H, Reed WD . The role of T cells in mouse cytomegalovirus myocarditis Immunol 1989 67: 132–134

    CAS  Google Scholar 

  26. Fairweather D et al. From infection to autoimmunity J Autoimmun 2001 16: 175–186

    Article  CAS  Google Scholar 

  27. Estes DM, Tuo W, Brown WC, Goin J . Effects of type I/type II IFNs and transforming growth factor-β on B cell differentiation and proliferation. Definition of costimulation and cytokine requirements for immunoglobulin synthesis and expression Immunol 1998 95: 604–611

    Article  CAS  Google Scholar 

  28. Speckner A, Kropff B, Knor S, Mach M . The antigenic domain 1 of human cytomegalovirus glycoprotein B contains an intramolecular disulphide bond J Gen Virol 2000 81: 2659–2663

    Article  CAS  Google Scholar 

  29. Alder SP . Immunoprophylaxis against cytomegalovirus disease Scand J Infect Dis 1995 99: 105–109

    Google Scholar 

  30. Xu J et al. Assessment of antigenicity and genetic variation of glycoprotein B of murine cytomegalovirus J Gen Virol 1996 77: 49–59

    Article  CAS  Google Scholar 

  31. Britt W, Mach M . Human cytomegalovirus glycoproteins Intervirology 1996 39: 401–412

    Article  CAS  Google Scholar 

  32. Endresz V et al. Optimisation of DNA immunization against human cytomegalovirus Vaccine 2001 19: 3972–3980

    Article  CAS  Google Scholar 

  33. Presti RM et al. Novel cell type-specific antiviral mechanism of interferon gamma action in macrophages J Exp Med 2001 193: 483–496

    Article  CAS  Google Scholar 

  34. Tanaka T et al. Overexpression of interleukin-6 aggravates viral myocarditis: impaired increase in tumor necrosis factor-α J Mol Cell Cardiol 2001 33: 1627–1635

    Article  CAS  Google Scholar 

  35. Morello CS, Cranmer LD, Spector DH . Suppression of murine cytomegalovirus (MCMV) replication with a DNA vaccine encoding MCMV M84 (a homolog of human cytomegalovirus pp65) J Virol 2000 74: 3696–3708

    Article  CAS  Google Scholar 

  36. Sin JI, Kim JJ, Zhang D, Weiner DB . Modulation of cellular responses by plasmid CD40L: CD40L plasmid vectors enhance antigen-specific helper T cell type 1 CD4+ T cell-mediated protective immunity against herpes simplex virus type 2 in vivo Hum Gene Ther 2001 12: 1091–1102

    Article  CAS  Google Scholar 

  37. Powrie F, Coffman RL . Cytokine regulation of T cell function: potential for therapeutic intervention Immunol Today 1993 14: 270–274

    Article  CAS  Google Scholar 

  38. O'Garra A, Murphy K . T-cell subsets in autoimmunity Curr Opin Immunol 1993 5: 880–886

    Article  CAS  Google Scholar 

  39. Tough DF et al. Stimulation of naive and activated memory T cells by cytokines Immunol Rev 1999 170: 39–47

    Article  CAS  Google Scholar 

  40. Marrack P et al. Type I interferons keep activated T cells alive J Exp Med 1999 189: 521–529

    Article  CAS  Google Scholar 

  41. Akbar AN, Lord JM, Salmon M . IFN-α and IFN-β: a link between immune memory and chronic inflammation Immunol Today 2000 21: 337–342

    Article  CAS  Google Scholar 

  42. Lenzo JC et al. Characterisation of murine cytomegalovirus myocarditis: cellular infiltration of the heart and virus persistence J Mol Cell Cardiol 2002 34: 1–12

    Article  Google Scholar 

  43. Chen C, Okayama H . High efficiency transformation of mammalian cells by plasmid DNA Mol Cell Biol 1987 7: 2745–2752

    Article  CAS  Google Scholar 

  44. Yeow W-S, Lawson CM, Beilharz MW . Anti-viral activities of interferon-α subtypes in vivo J Immunol 1998 160: 2932–2939

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are especially grateful to VICAL for providing the pkCMVint mammalian expression vector. This work was supported by the National Health and Medical Research Council of Australia (project grant No. 990393).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cull, V., Broomfield, S., Bartlett, E. et al. Coimmunisation with type I IFN genes enhances protective immunity against cytomegalovirus and myocarditis in gB DNA-vaccinated mice. Gene Ther 9, 1369–1378 (2002). https://doi.org/10.1038/sj.gt.3301809

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301809

Keywords

This article is cited by

Search

Quick links