Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Functional impairment of human T-lymphocytes following PHA-induced expansion and retroviral transduction: implications for gene therapy

Abstract

The immune function of retrovirus-mediated gene modified (GM) T cells is critical for a beneficial effect to follow their adoptive transfer into patients. Recent clinical data show that GM T cells expanded with PHA have reduced function in vivo. However, little functional analysis of PHA stimulation is available. Our results show that expansion of T cells with PHA impairs their ability to respond (proliferation, cytotoxicity and IFNγ and perforin expression) to allogeneic stimulation or viral antigens in vitro. Conversely, CD3/CD28-based protocols can preserve this immune function. Retroviral transduction did not alter the functional profile induced by polyclonal stimulation. We investigated the mechanisms leading to this functional effect, and identified differential effects of PHA and CD3/CD28 on the distribution of CCR7/CD45RA T cell functional subsets, which may explain the functional differences observed. While CD3/CD28 stimulation parallels the lineage differentiation pattern induced by antigens in physiological conditions, PHA induces a skewed distribution of the CCR7/CD45RA functional T cell subsets, with near disappearance of the subpopulations that display the effector phenotype. Overall, this study demonstrates a functional disadvantage for transduction protocols based on PHA, uncovers mechanisms that may explain this functional effect, and provides us with information to design and select transduction protocols with an improved functional outcome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Roe T, Reynolds TC, Yu G, Brown PO . Integration of murine leukemia virus DNA depends on mitosis Embo J 1993 12: 2099–2108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tiberghien P et al. Ganciclovir treatment of herpes simplex thymidine kinase-transduced primary T lymphocytes: an approach for specific in vivo donor T-cell depletion after bone marrow transplantation? Blood 1994 84: 1333–1341

    CAS  PubMed  Google Scholar 

  3. Contassot E et al. Retrovirus-mediated transfer of the herpes simplex type I thymidine kinase gene in alloreactive T lymphocytes Hum Gene Ther 1998 9: 73–80

    Article  CAS  PubMed  Google Scholar 

  4. Ferrand C et al. Retrovirus-mediated gene transfer in primary T lymphocytes: influence of the transduction/selection process and of ex vivo expansion on the T cells receptor beta chain hypervariable region repertoire Hum Gene Ther 2000 11: 1151–1164

    Article  CAS  PubMed  Google Scholar 

  5. Bunnell BA et al. High-efficiency retroviral-mediated gene transfer into human and nonhuman primate peripheral blood lymphocytes Proc Natl Acad Sci USA 1995 92: 7739–7743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mavilio F et al. Peripheral blood lymphocytes as target cells of retroviral vector-mediated gene transfer Blood 1994 83: 1988–1997

    CAS  PubMed  Google Scholar 

  7. Munshi NC et al. Thymidine kinase (TK) gene-transduced human lymphocytes can be highly purified, remain fully functional, and are killed efficiently with ganciclovir Blood 1997 89: 1334–1340

    CAS  PubMed  Google Scholar 

  8. Lamana ML, Segovia JC, Guenechea G, Bueren JA . Systematic analysis of clinically applicable conditions leading to a high efficiency of transduction and transgene expression in human T cells J Gene Med 2001 3: 32–41

    Article  CAS  PubMed  Google Scholar 

  9. Cohen JL et al. Prevention of graft-versus-host disease in mice using a suicide gene expressed in T lymphocytes Blood 1997 89: 4636–4645

    CAS  PubMed  Google Scholar 

  10. Cohen JL, Boyer O, Klatzmann D . Suicide gene therapy of graft-versus-host disease: immune reconstitution with transplanted mature T cells Blood 2001 98: 2071–2076

    Article  CAS  PubMed  Google Scholar 

  11. Drobyski WR et al. Protection from lethal murine graft-versus-host disease without compromise of alloengraftment using transgenic donor T cells expressing a thymidine kinase suicide gene Blood 2001 97: 2506–2513

    Article  CAS  PubMed  Google Scholar 

  12. Sauce D et al. Retrovirus-mediated gene transfer in primary T lymphocytes impairs their anti-Epstein-Barr virus potential through both culture-dependent and selection process-dependent mechanisms Blood 2002 99: 1165–1173

    Article  CAS  PubMed  Google Scholar 

  13. Weber M et al. Function of SDV-TK suicide gene transduced canine cytotoxic T lymphocytes Blood 2001 98: 328b

    Article  Google Scholar 

  14. Bonini C . HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia Science 1997 276: 1719–1724

    Article  CAS  PubMed  Google Scholar 

  15. Tiberghien P et al. Administration of herpes simplex-thymidine kinase-expressing donor T cells with a T-cell-depleted allogeneic marrow graft Blood 2001 97: 63–72

    Article  CAS  PubMed  Google Scholar 

  16. Ciceri F et al. Reinfusion of HSV-TK engineered donor lymphocytes after haplo-identical hemopoietic stem cell transplantation provide early immune reconstitution without GvHD Blood 2001 98: 779a

    Google Scholar 

  17. Hamann D et al. Phenotypic and functional separation of memory and effector human CD8+ T cells J Exp Med 1997 186: 1407–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hoflich C et al. CD45RA(bright)/CD11a(bright) CD8+ T cells: effector T cells Int Immunol 1998 10: 1837–1845

    Article  CAS  PubMed  Google Scholar 

  19. Faint JM et al. Memory T cells constitute a subset of the human CD8+CD45RA+ pool with distinct phenotypic and migratory characteristics J Immunol 2001 167: 212–220

    Article  CAS  PubMed  Google Scholar 

  20. Butcher EC, Picker LJ . Lymphocyte homing and homeostasis Science 1996 272: 60–66

    Article  CAS  PubMed  Google Scholar 

  21. Mackay CR . Homing of naive, memory and effector lymphocytes Curr Opin Immunol 1993 5: 423–427

    Article  CAS  PubMed  Google Scholar 

  22. Sallusto F et al. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions Nature 1999 401: 708–712

    Article  CAS  PubMed  Google Scholar 

  23. Champagne P et al. Skewed maturation of memory HIV-specific CD8 T lymphocytes Nature 2001 410: 106–111

    Article  CAS  PubMed  Google Scholar 

  24. Weninger W, Crowley MA . Manjunath N., von Andrian UH. Migratory properties of naive, effector, and memory CD8(+) T cells J Exp Med 2001 194: 953–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Manjunath N et al. Effector differentiation is not prerequisite for generation of memory cytotoxic T lymphocytes J Clin Invest 2001 108: 871–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen F et al. Absence of long-term memory phenotype in in vitro dendritic cell-expanded CMV and EBV-specific CTLs Blood 2001 98: 512a

    Google Scholar 

  27. Georges GE et al. Engraftment of DLA-haploidentical marrow with ex vivo expanded, retrovirally transduced cytotoxic T lymphocytes Blood 2001 98: 3447–3455

    Article  CAS  PubMed  Google Scholar 

  28. Koehne G, Gallardo HF, Sadelain M, O'Reilly RJ . Rapid selection of antigen-specific T lymphocytes by retroviral transduction Blood 2000 96: 109–117

    CAS  PubMed  Google Scholar 

  29. Maus MV et al. Ex vivo expansion of polyclonal and antigen-specific cytotoxic T lymphocytes by artificial APCs expressing ligands for the T-cell receptor, CD28 and 4-1BB Nat Biotechnol 2002 20: 143–148

    Article  CAS  PubMed  Google Scholar 

  30. Uckert W et al. Efficient gene transfer into primary human CD8+ T lymphocytes by MuLV-10A1 retrovirus pseudotype Hum Gene Ther 2000 11: 1005–1014

    Article  CAS  PubMed  Google Scholar 

  31. Verzeletti S et al. Herpes simplex virus thymidine kinase gene transfer for controlled graft-versus-host disease and graft-versus-leukemia: clinical follow-up and improved new vectors Hum Gene Ther 1998 9: 2243–2251

    Article  CAS  PubMed  Google Scholar 

  32. Kotani H et al. Improved methods of retroviral vector transduction and production for gene therapy Hum Gene Ther 1994 5: 19–28

    Article  CAS  PubMed  Google Scholar 

  33. Pollok KE et al. Costimulation of transduced T lymphocytes via T cells receptor-CD3 complex and CD28 leads to increased transcription of integrated retrovirus Hum Gene Ther 1999 10: 2221–2236

    Article  CAS  PubMed  Google Scholar 

  34. Movassagh M et al. Retrovirus-mediated gene transfer into T cells: 95% transduction efficiency without further in vitro selection Hum Gene Ther 2000 11: 1189–1200

    Article  CAS  PubMed  Google Scholar 

  35. Contassot E . In vivo alloreactive potential of ex vivo-expanded primary T lymphocytes Transplantation 1998 65: 1365–1370

    Article  CAS  PubMed  Google Scholar 

  36. Lauvau G et al. Priming of memory but not effector CD8 T cells by a killed bacterial vaccine Science 2001 294: 1735–1739

    Article  CAS  PubMed  Google Scholar 

  37. Schmaltz C et al. Differential use of Fas ligand and perforin cytotoxic pathways by donor T cells in graft-versus-host disease and graft-versus-leukemia effect Blood 2001 97: 2886–2895

    Article  CAS  PubMed  Google Scholar 

  38. Yoshimi A et al. Epstein-Barr virus-specific T-cell cytotoxicity is mediated through the perforin pathway in patients with lymphoproliferative disorders after allogeneic bone marrow transplantation Br J Haematol 2002 116: 710–715

    Article  PubMed  Google Scholar 

  39. Ku CC et al. Control of homeostasis of CD8+ memory T cells by opposing cytokines Science 2000 288: 675–678

    Article  CAS  PubMed  Google Scholar 

  40. Solache A et al. Identification of three HLA-A*0201-restricted cytotoxic T cells epitopes in the cytomegalovirus protein pp65 that are conserved between eight strains of the virus J Immunol 1999 163: 5512–5518

    CAS  PubMed  Google Scholar 

  41. Burrows SR et al. An Epstein-Barr virus-specific cytotoxic T cells epitope in EBV nuclear antigen 3 (EBNA 3) J Exp Med 1990 171: 345–349

    Article  CAS  PubMed  Google Scholar 

  42. Altman JD et al. Phenotypic analysis of antigen-specific T lymphocytes Science 1996 274: 94–96

    Article  CAS  PubMed  Google Scholar 

  43. Aubert G et al. Cytomegalovirus-specific cellular immune responses and viremia in recipients of allogeneic stem cell transplants J Infect Dis 2001 184: 955–963

    Article  CAS  PubMed  Google Scholar 

  44. Kuiper M, Sanches R, Gaken JA, Bignon YJ . Cloning and characterization of a retroviral plasmid, pCC1, for combination suicide gene therapy Biotechniques 2000 28: 572–574

    Article  CAS  PubMed  Google Scholar 

  45. Johnson D et al. Expression and structure of the human NGF receptor Cell 1986 47: 545–554

    Article  CAS  PubMed  Google Scholar 

  46. Ory DS, Neugeboren BA, Mulligan RC . A stable human-derived packaging cell line for production of high titer retrovirus/vesicular stomatitis virus G pseudotypes Proc Natl Acad Sci USA 1996 93: 11400–11406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Duarte RF, Frank DA . SCF and G-CSF lead to the synergistic induction of proliferation and gene expression through complementary signaling pathways Blood 2000 96: 3422–3430

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Professor Y-J Bignon (Centre Jean Perrin, France) and Dr G Dranoff (Dana-Farber Cancer Institute, Boston, MA, USA) for generously sharing reagents, and Dr David A Frank (Dana-Farber Cancer Institute, Boston, MA, USA) and Dr SGE Marsh (The Anthony Nolan Research Institute) for critical reading and stimulating discussion on the manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duarte, R., Chen, F., Lowdell, M. et al. Functional impairment of human T-lymphocytes following PHA-induced expansion and retroviral transduction: implications for gene therapy. Gene Ther 9, 1359–1368 (2002). https://doi.org/10.1038/sj.gt.3301807

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301807

Keywords

This article is cited by

Search

Quick links