Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Electrically mediated delivery of vector plasmid DNA elicits an antitumor effect

Abstract

In vivo electroporation is an efficient means of increasing plasmid DNA delivery to normal tissues, such as skin and muscle, as well as directly to tumors. In the experiments described here, plasmid DNA was delivered by in vivo electroporation to B16 mouse melanomas using two very different pulsing protocols. Reporter expression increased 21- or 42-fold, respectively with electroporation over injection alone. The growth of experimental melanomas with an approximate diameter of 4 mm on the day of treatment was monitored after electroporation delivery of reporter plasmid DNA. Remarkably, short-term complete regressions using one of these pulsing protocols occurred in up to 100% of mice. These regressions continued long term in up to 83% of animals. 70% of these mice were resistant to challenge with B16 melanoma cells. Histological analysis revealed large numbers of apoptotic cells 24 h after treatment. This antitumor effect did not require therapeutic cDNA expression or eukaryotic sequences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Jaroszeski MJ, Gilbert R, Heller R . Electrochemotherapy: an emerging drug delivery method for the treatment of cancer Adv Drug Del Rev 1997 26: 185–197

    Article  CAS  Google Scholar 

  2. Heller R, Gilbert R, Jaroszeski M . Clinical applications of electrochemotherapy Adv Drug Del Rev 1999 35: 119–129

    Article  CAS  Google Scholar 

  3. Heller L, Lucas ML . Delivery of plasmid DNA by in vivo electroporation Gene Ther Mol Biol 2000 5: 50–55

    Google Scholar 

  4. Titomirov AV, Sukharev S, Kistanova E . In vivo electroporation and stable transformation of newborn mice by plasmid DNA Biochim Biophys Acta 1991 1088: 131–134

    Article  CAS  PubMed  Google Scholar 

  5. Glasspool-Malone J, Somiari S, Drabick JJ, Malone RW . Efficient nonviral cutaneous transfection Mol Ther 2000 2: 140–146

    Article  CAS  PubMed  Google Scholar 

  6. Drabick JJ et al. Cutaneous transfection and immune responses to intradermal nucleic acid vaccination are significantly enhanced by in vivo electropermeabilization Mol Ther 2000 3: 249–255

    Article  Google Scholar 

  7. Heller R et al. Intradermal delivery of IL-12 plasmid DNA by in vivo electroporation DNA Cell Biol 2001 20: 21–26

    Article  CAS  PubMed  Google Scholar 

  8. Heller R et al. In vivo gene electroinjection and expression in rat liver FEBS Lett 1996 389: 225–228

    Article  CAS  PubMed  Google Scholar 

  9. Suzuki T et al. Direct gene transfer into rat liver cells by in vivo electroporation FEBS Lett 1998 425: 436–440

    Article  CAS  PubMed  Google Scholar 

  10. Muramatsu T et al. Foreign gene expression in the mouse testis by localized in vivo gene transfer Biochem Biophys Res Com 1997 233: 45–49

    Article  CAS  PubMed  Google Scholar 

  11. Wolff JA et al. Direct gene transfer into mouse muscle in vivo Science 1990 247: 1465–1468

    Article  CAS  PubMed  Google Scholar 

  12. Aihara H, Miyazaki J-I . Gene transfer into muscle by electroporation in vivo Nat Biotech 1998 6: 867–870

    Article  Google Scholar 

  13. Mir LM et al. High-efficiency gene transfer into skeletal muscle mediated by electric pulses Proc Natl Acad Sci USA 1999 96: 4262–4267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mathiesen I . Electropermeabilization of skeletal muscle enhances gene transfer in vivo Gene Therapy 1999 6: 508–514

    Article  CAS  PubMed  Google Scholar 

  15. Rizzuto G et al. Efficient and regulated erythropoietin production by naked DNA injection and muscle electroporation Proc Natl Acad Sci USA 1999 96: 6417–6422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vicat JM et al. Muscle transfection by electroporation with high-voltage and short-pulse currents provides high-level and long-lasting gene expression Hum Gene Ther 2000 11: 909–916

    Article  CAS  PubMed  Google Scholar 

  17. Maruyama H et al. Continuous erythropoietin delivery by muscle-targeted gene transfer using in vivo electroporation Hum Gene Ther 2000 11: 429–437

    Article  CAS  PubMed  Google Scholar 

  18. Widera G et al. Increased DNA vaccine delivery and immunogenicity by electroporation in vivo J Immunol 2000 164: 4635–4640

    Article  CAS  PubMed  Google Scholar 

  19. Zucchelli S et al. Enhancing B- and T-cell immune response to a hepatitis C virus E2 DNA vaccine by intramuscular electrical gene transfer J Virol 2000 74: 11598–11607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kadowaki S-E et al. Protection against influenza virus infection in mice immunized by administration of hemagglutinin-expressing DNAs with electroporation Vaccine 2000 18: 2779–2788

    Article  CAS  PubMed  Google Scholar 

  21. Chen Z et al. Cross protection against a lethal influenza virus infection by DNA vaccine to neuraminidase Vaccine 2000 18: 3214–3222

    Article  CAS  PubMed  Google Scholar 

  22. Lucas ML, Heller R . Immunomodulation by electrically enhanced delivery of plasmid DNA encoding IL-12 to murine skeletal muscle Mol Ther 2001 3: 47–53

    Article  CAS  PubMed  Google Scholar 

  23. Lucas ML, Jaroszeski MJ, Gilbert R, Heller R . In vivo electroporation using an exponentially enhanced pulse, a new wave form DNA Cell Biol 2001 20: 183–188

    Article  CAS  PubMed  Google Scholar 

  24. Nishi T et al. High-efficiency in vivo gene transfer using intraarterial plasmid DNA injection following in vivo electroporation Cancer Res 1996 56: 1050–1055

    CAS  PubMed  Google Scholar 

  25. Rols M-P et al. In vivo electrically mediated protein and gene transfer in murine melanoma Nat Biotech 1998 16: 168–171

    Article  CAS  Google Scholar 

  26. Wells JM et al. Electroporation-enhanced gene delivery in mammary tumors Gene Therapy 2000 7: 541–547

    Article  CAS  PubMed  Google Scholar 

  27. Heller L et al. Electrically mediated plasmid DNA delivery to hepatocellular carcinomas in vivo Gene Therapy 2000 7: 826–829

    Article  CAS  PubMed  Google Scholar 

  28. Niu G et al. Gene therapy with dominant-negative Stat3 suppresses growth of the murine melanoma B16 tumor in vivo Cancer Res 1999 59: 5059–5063

    CAS  PubMed  Google Scholar 

  29. Goto T et al. Highly efficient electro-gene therapy of solid tumor by using an expression plasmid for the herpes simplex virus thymidine kinase gene Proc Natl Acad Sci USA 2000 97: 354–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yamashita Y-I et al. Electroporation-mediated interleukin-12 gene therapy for hepatocellular carcinoma in the mice model Cancer Res 2001 61: 1005–1012

    CAS  PubMed  Google Scholar 

  31. Tamura T et al. Intratumoral delivery of interleukin 12 expression plasmids with in vivo electroporation is effective for colon and renal cancer Human Gene Ther 2001 12: 1265–1276

    Article  CAS  Google Scholar 

  32. Kishida T et al. In vivo electroporation-mediated transfer of interleukin-12 and interleukin-18 genes induces significant antitumor effects against melanoma in mice Gene Therapy 2001 8: 1234–1240

    Article  CAS  PubMed  Google Scholar 

  33. Heller L et al. In vivo electroporation of plasmids encoding GM-CSF or interleukin-2 into existing B16 melanomas combined with electrochemotherapy induces long-term antitumor immunity Melanoma Res 2000 10: 577–583

    Article  CAS  PubMed  Google Scholar 

  34. Mendiratta SK et al. Therapeutic tumor immunity induced by polyimmunization with melanoma antigens gp100 and TRP-2 Cancer Res 2001 61: 859–863

    CAS  PubMed  Google Scholar 

  35. Li S et al. Intramuscular electroporation delivery of IFN α gene therapy for inhibition of tumor growth located at a distant site Gene Therapy 2001 8: 400–407

    Article  CAS  PubMed  Google Scholar 

  36. Gilbert RA, Jaroszeski MJ, Heller R . Novel electrode designs for electrochemotherapy Biochim Biophys Acta 1997 1334: 9–14

    Article  CAS  PubMed  Google Scholar 

  37. Brasier AP . Reporter system using firefly luciferase Ausubel FM (eds); Short Protocols in Molecular Biology John Wiley 1992 pp 9–21

  38. Bird AP . CpG rich islands and the function of DNA methylation Nature 1986 321: 209–213

    Article  CAS  PubMed  Google Scholar 

  39. Krieg AM et al. CpG motifs in bacterial DNA trigger direct B-cell activation Nature 1995 374: 546–549

    Article  CAS  PubMed  Google Scholar 

  40. Sato Y et al. Immunostimulatory DNA sequences necessary for effective intradermal gene immunization Science 1996 273: 352–354

    Article  CAS  PubMed  Google Scholar 

  41. Krieg AM, Hartmann G, Yi AK . Mechanism of action of CpG DNA Curr Top Micro Immunol 1999 247: 1–21

    Google Scholar 

  42. Tokunaga T et al. Antitumor activity of deoxyribonucleic acid fraction from Mycobacterium bovis BCG. I. Isolation, physiochemical characterization, and antitumor activity J Natl Cancer Inst 1984 72: 955–962

    CAS  PubMed  Google Scholar 

  43. Yamamoto S, Kuramoto E, Shimada S, Tokunaga T . In vitro augmentation of natural killer cell activity and production of interferon-alpha/beta and -gamma with deoxyribonucleic acid fraction from Mycobacterium bovis BCG Jpn J Cancer Res 1988 79: 866–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Weiner GJ et al. Immunostimulatory oligodeoxynucleotides containing the CpG motif are effective as immune adjuvants in tumor antigen immunization Proc Natl Acad Sci USA 1997 94: 10833–10837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu H-M et al. Immunostimulatory CpG oligodeoxynucleotides enhance the immune response to vaccine strategies involving granulocyte-macrophage colony-stimulating factor Blood 1998 92: 3730–3736

    CAS  PubMed  Google Scholar 

  46. Dow SW et al. Lipid-DNA complexes induce potent activation of innate immune responses and antitumor activity when administered intravenously J Immunol 1999 163: 1552–1561

    CAS  PubMed  Google Scholar 

  47. McMahon JM et al. Inflammatory responses following direct injection of plasmid DNA into skeletal muscle Gene Therapy 1998 5: 1283–1290

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The T820 Electrosquare porator and autoswitcher and plasmid VR1255 were kind gifts of BTX (San Diego, CA, USA) and Vical, Inc (San Diego, CA, USA) respectively. This project was supported in part by the University of South Florida Research and Creative Scholarship Grant Program, the American Cancer Society, Florida Division, Inc, the Pathology Core Facility, Histology Laboratory, at the University of South Florida College of Medicine and at the H Lee Moffitt Cancer Center and Research Institute, and the Center for Molecular Delivery.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heller, L., Coppola, D. Electrically mediated delivery of vector plasmid DNA elicits an antitumor effect. Gene Ther 9, 1321–1325 (2002). https://doi.org/10.1038/sj.gt.3301802

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301802

Keywords

This article is cited by

Search

Quick links